• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HE Haosong, TENG Jidong, ZHANG Sheng, SHENG Daichao. Determining frost heave classification by using ratio of frost heave to square root of time[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2519-2528. DOI: 10.11779/CJGE20221102
Citation: HE Haosong, TENG Jidong, ZHANG Sheng, SHENG Daichao. Determining frost heave classification by using ratio of frost heave to square root of time[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2519-2528. DOI: 10.11779/CJGE20221102

Determining frost heave classification by using ratio of frost heave to square root of time

More Information
  • Received Date: September 05, 2022
  • Available Online: March 15, 2023
  • The frost heave classification is the critical index for the design of foundation engineering in cold regions. At present, it is considered as a basic property of materials. Many criteria belong to empirical or semi-empirical methods and lack theoretical support. The frost heave tests are tedious and long time-consuming, and are not easily operated. To propose a rational and simple frost heave classification index, from the frost heave mechanism, an analytical model for unsaturated frozen soil is established and validated. Then a new frost heave classification index R (mm/h0.5), which is the ratio of frost heave to square root of time, is identified based on the proposed model. Through comparison with the large number of frost heave results, the value of R less than 0.21 indicates the low frost heave classification, that between 0.21 and 1.18 represents the medium heave classification, and that greater than 1.18 means the high frost heave classification. From a statistical probability perspective, the probability density distribution of the values of each classification index is analyzed, and their trends are also compared. It is found that the concentration and stability of the new index R are the highest during freezing process. The new index R has theoretical support and simultaneously couples the basic soil properties and freezing environmental factors. It breaks through the limitation of the existing indexes, and enriches the frost heave classification system, and provides theoretical support for the engineering design in cold regions.
  • [1]
    CHAMBERLAIN E J. Frost Susceptibility of Soil, Review of Index Tests[M]. Hanover: US Army Cold Regions Research and Engineering Laboratory, 1981.
    [2]
    LORANGER B, DORÉ G, HOFF I, et al. Assessing soil index parameters to determine the frost susceptibility of crushed rock aggregates[J]. Cold Regions Science and Technology, 2022, 197: 103489. doi: 10.1016/j.coldregions.2022.103489
    [3]
    卢春房. 路基工程[M]. 北京: 中国铁道出版社, 2015: 191-274.

    LU Chunfang. Subgrade Construction[M]. Beijing: China Railway Publishing House, 2015: 191-274. (in Chinese)
    [4]
    NIU F J, LI A Y, LUO J, et al. Soil moisture, ground temperatures, and deformation of a high-speed railway embankment in Northeast China[J]. Cold Regions Science and Technology, 2017, 133: 7-14. doi: 10.1016/j.coldregions.2016.10.007
    [5]
    LUND M S M, HANSEN K K, ANDERSEN I B. Frost susceptibility of sub-base gravel used in Pearl-Chain Bridges: an experimental investigation [J]. International Journal of Pavement Engineering, 2018, 19(11): 986-998. doi: 10.1080/10298436.2016.1230429
    [6]
    KONRAD J M, LEMIEUX N. Influence of fines on frost heave characteristics of a well-graded base-course material [J]. Canadian Geotechnical Journal, 2005, 42(2): 515-527. doi: 10.1139/t04-115
    [7]
    KONRAD J M, MORGENSTERN N R. Effects of applied pressure on freezing soils[J]. Canadian Geotechnical Journal, 1982, 19(4): 494-505. doi: 10.1139/t82-053
    [8]
    KONRAD J M. Influence of freezing mode on frost heave characteristics[J]. Cold Regions Science and Technology, 1988, 15(2): 161-175. doi: 10.1016/0165-232X(88)90062-6
    [9]
    SHENG D C. Frost susceptibility of soils―A confusing concept that can misguide geotechnical design in cold regions [J]. Sciences in Cold and Arid Regions, 2021, 13(2): 87-94.
    [10]
    KONRAD J M. Frost susceptibility related to soil index properties[J]. Canadian Geotechnical Journal, 1999, 36(3): 403-417. doi: 10.1139/t99-008
    [11]
    何浩松, 滕继东, 张升, 等. 试论冻害敏感性的合理性[J]. 岩土工程学报, 2022, 44(2): 224-234. doi: 10.11779/CJGE202202003

    HE Haosong, TENG Jidong, ZHANG Sheng, et al. Rationality of frost susceptibility of soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 224-234. (in Chinese) doi: 10.11779/CJGE202202003
    [12]
    铁路特殊路基设计规范: TB 10035—2018[S]. 北京: 中国铁道出版社, 2018.

    Code for Design on Special Railway Earth Structure: TB 10035—2018[S]. Beijing: China Railway Publishing House, 2018. (in Chinese)
    [13]
    Standard Test Methods for Frost Heave and Thaw Weakening Susceptibility of Soils: ASTM D5918-13[S]. 2013.
    [14]
    KONRAD J M. Frost Heave Mechanics[D]. Edmonton: University of Alberta, 1980.
    [15]
    HENDRY M T, ONWUDE L U, SEGO D C. A laboratory investigation of the frost heave susceptibility of fine-grained soil generated from the abrasion of a diorite aggregate[J]. Cold Regions Science and Technology, 2016, 123: 91-98. doi: 10.1016/j.coldregions.2015.11.016
    [16]
    KONRAD J M. Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils[J]. Canadian Geotechnical Journal, 2005, 42(1): 38-50. doi: 10.1139/t04-080
    [17]
    RIEKE R D. The Role of Specific Surface Area and Related Index Properties in the Frost Susceptibility of Soils [D]. Corvallis: Oregon State University, 1982: 71-78.
    [18]
    ĆWIĄKAŁA M, GAJEWSKA B, KRASZEWSKI C, et al. Laboratory investigations of frost susceptibility of aggregates applied to road base courses[J]. Transportation Research Procedia, 2016, 14: 3476-3484. doi: 10.1016/j.trpro.2016.05.312
    [19]
    ZHANG S, TENG J, HE Z, et al. Canopy effect caused by vapour transfer in covered freezing soils[J]. Géotechnique, 2016, 66(11): 927-940. doi: 10.1680/jgeot.16.P.016
    [20]
    TENG J D, LIU J L, ZHANG S, et al. Frost heave in coarse-grained soils: experimental evidence and numerical modelling[J]. Géotechnique, 2022: 1-12.
    [21]
    SHENG D C, ZHANG S, YU Z W, et al. Assessing frost susceptibility of soils using PCHeave[J]. Cold Regions Science and Technology, 2013, 95: 27-38. doi: 10.1016/j.coldregions.2013.08.003
    [22]
    TENG J, SHAN F, HE Z, et al. Experimental study of ice accumulation in unsaturated clean sand[J]. Géotechnique, 2019, 69(3): 251-259. doi: 10.1680/jgeot.17.P.208
    [23]
    KONRAD J M, MORGENSTERN N R. A mechanistic theory of ice formation in fine grained soils[J]. Canadian Geotechnical Journal, 1980, 17(4): 473-486. doi: 10.1139/t80-056
    [24]
    高建强. 季节冻土区高速铁路路基冻胀机理及防治技术研究[D]. 北京: 中国科学院大学, 2018: 19-39.

    GAO Jianqiang. Study on Frost Heave Mechanism and Prevention Technology of High-Speed Railway Subgrade in Seasonal Frozen Soil Area[D]. Beijing: University of Chinese Academy of Sciences, 2018: 19-39. (in Chinese)
    [25]
    AZMATCH T F, SEGO D C, ARENSON L U, et al. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils[J]. Cold Regions Science and Technology, 2012, 83-84: 103-109. doi: 10.1016/j.coldregions.2012.07.002
    [26]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. 3rd ed. Hoboken: John Wiley & Sons, 2005.
    [27]
    SOILVISION. SoilVision Version 3 (Computer Program) [R]. Sask : SoilVision Systems Limited, 2002.
    [28]
    TENG J D, YAN H, LIANG S H, et al. Generalising the Kozeny-Carman equation to frozen soils[J]. Journal of Hydrology, 2021, 594: 125885. doi: 10.1016/j.jhydrol.2020.125885
    [29]
    薛珂. 正冻土水分迁移和冰晶生长过程研究[D]. 北京: 中国科学院大学, 2017: 91-104.

    XUE Ke. Study on Water Migration and Ice Crystal Growth Process in Permafrost[D]. Beijing: University of Chinese Academy of Sciences, 2017: 91-104. (in Chinese)
    [30]
    ASKAR Z, ZHANBOLAT S. Experimental investigations of freezing soils at ground conditions of Astana, Kazakhstan[J]. Sciences in Cold and Arid Regions, 2018, 7: 399-406.
    [31]
    程旭东. 饱和膨胀土冻胀特性及冻胀模型[D]. 哈尔滨: 哈尔滨工业大学, 2016: 22-32.

    CHENG Xudong. Frost Heave Characteristics and Model for Saturated Expansive Clay[D]. Harbin: Harbin Institute of Technology, 2016: 22-32. (in Chinese)
    [32]
    赵世晨. 哈牡客专铁路路基冻胀特性研究[D]. 西安: 长安大学, 2019: 41-59.

    ZHAO Shichen. Study on Frost Heave Characteristics of Harbin-Mudanjiang High-Speed Line Subgrade[D]. Xi'an: Changan University, 2019: 41-59. (in Chinese)
    [33]
    王青志. 寒区高铁路基粗颗粒填料冻胀变形与强度研究[D]. 北京: 北京交通大学, 2017: 44-53.

    WANG Qingzhi. Study on the Frost Heave Behavior and Strength of Coarse-Grained Fillings From High-Speed Railway Subgrade in Cold Region[D]. Beijing: Beijing Jiaotong University, 2017: 44-53). (in Chinese)
    [34]
    DAGLI D. Laboratory Investigations of Frost Action Mechanisms in Soils[D]. Luleå: Luleå University of Technology, 2017.
    [35]
    LORANGER B. Laboratory Investigation of Frost Susceptibility of Crushed Rock Aggregates and Field Assessment of Frost Heave and Frost Depth[D]. Trondheim: Norwegian University of Science and Technology, 2020.
    [36]
    NURMIKOLU A. Degradation and Frost Susceptibility of Crushed Rock Aggregates Used in Structural Layers of Railway Track[D]. Tampere: Tampere University of Technology, 2005.
    [37]
    US Army Corps of Engineers. Soils and Geology-Pavement Design for Frost Conditions[S]: 5-818-2. 1965.
    [38]
    KAPLAR C W. Freezing Test for Evaluating Relative Frost Susceptibility of Various Soils[M]. Hanover: US Army Cold Regions Research and Engineering Laboratory, 1974.
    [39]
    JIANG X G, WU L, WEI Y W. Influence of fine content on the soil–water characteristic curve of unsaturated soils[J]. Geotechnical and Geological Engineering, 2020, 38(2): 1371-1378. doi: 10.1007/s10706-019-01096-5
    [40]
    SHEN J H, HU M J, WANG X, et al. SWCC of calcareous silty sand under different fines contents and dry densities[J]. Frontiers in Environmental Science, 2021, 9: 682907. doi: 10.3389/fenvs.2021.682907
    [41]
    胡明鉴, 崔翔, 王新志, 等. 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm

    HU Mingjian, CUI Xiang, WANG Xinzhi, et al. Experimental study of the effect of fine particles on permeability of the calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm
    [42]
    NEMES A, SCHAAP M G, LEIJ F J, et al. Description of the unsaturated soil hydraulic database UNSODA version 2.0[J]. Journal of Hydrology, 2001, 251(3/4): 151-162.
    [43]
    DEVOIE É G, GRUBER S, MCKENZIE J M. A repository of measured soil freezing characteristic curves: 1921 to 2021[J]. Earth System Science Data, 2022, 14(7): 3365-3377.
  • Related Articles

    [1]WANG Yuke, FENG Shuang, ZHONG Yanhui, ZHANG Bei. A data-driven model for predicting shear strength indexes of normally consolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 183-188. DOI: 10.11779/CJGE2023S20025
    [2]ZHONG Zi-lan, SHEN Yi-yao, ZHEN Li-bin, ZHANG Cheng-ming, ZHAO Mi, DU Xiu-li. Ground motion intensity measures and dynamic response indexes of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 486-494. DOI: 10.11779/CJGE202003010
    [3]YIN Jian-hua, FENG Wei-qiang. New simplified method for calculating consolidation settlement of clayey soils exhibiting creep and its verification[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 5-8. DOI: 10.11779/CJGE2019S2002
    [4]CHEN Qing-Sheng, XIONG Hao, GAO Guang-yun. Procedure for evaluating seismic compression in sands based on R-N cumulative damage fatigue nonlinear model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2203-2211.
    [5]CHI Shi-chun, CHEN Chong-mao, JIA Yu-feng. Ramberg-Osgood model with varying parameters for rockfill materials and its threshold strain[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2307-2311.
    [6]Application of R/S method in forecast of landslide deformation trend[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [7]HE Xiaoyan, SUN D, an. Assessment on social and environmental impacts of dam break[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1752-1757.
    [8]MA Fuheng, HE Xinwang, WU Guangyao. Risk early-warning index system for earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1734-1737.
    [9]XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13.
    [10]Qian Minggao, Miao Xiexing, Li Liangjie. Mechanism for the Fracyure Behaviours 0f Main Floor in Longwall Mining[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 55-62.
  • Cited by

    Periodical cited type(2)

    1. 顾相涛,岳祖润,胡田飞,仝伟华,张亚泽,张松. 察达沟谷冰碛土冻结深度与冻胀变形影响因素正交试验研究. 冰川冻土. 2024(01): 272-283 .
    2. 韩晓强. 水头差对水分迁移及冻胀影响研究. 青海交通科技. 2023(06): 141-147 .

    Other cited types(2)

Catalog

    Article views (310) PDF downloads (101) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return