• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Min-min, CAI Zheng-yin, XIAO Zhao-ran, XU Guang-ming. Failure modes and bearing capacity of composite bucket foundation breakwater in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 642-649. DOI: 10.11779/CJGE202004006
Citation: JIANG Min-min, CAI Zheng-yin, XIAO Zhao-ran, XU Guang-ming. Failure modes and bearing capacity of composite bucket foundation breakwater in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 642-649. DOI: 10.11779/CJGE202004006

Failure modes and bearing capacity of composite bucket foundation breakwater in clay

More Information
  • Received Date: August 13, 2019
  • Available Online: December 07, 2022
  • Composite bucket foundation breakwater is a new structure applicable for soft clay and large wave load conditions. A series of centrifuge tests are conducted to study the failure modes and bearing capacity of the structure as well as the effects of undrained strength of soils and load eccentricity. Main conclusions are as follows: the load-displacement curves for rotation angle, horizontal displacement and vertical displacement can be divided into elastic displacement stage and failure stage, except when the undrained strength of soils is 44.5 kPa, the failure stage of vertical displacement does not appear. With the increase of moment load, the rotation center moves downward below seabed level, and as the moment load reaches bearing capacity, the rotation center is located at bucket tip. When the undrained strength of soils and load eccentricity is low, the structure has a rotational and vertical displacement mode. As the load eccentricity increases to 10.5 m and 13.5 m, the displacement mode converts to a combination of rotational, horizontal and vertical displacements. As the undrained strength of soils increases to 44.5 kPa, the displacement mode converts to a combination of rotational and horizontal displacements. Under the same undrained strength of soils, the bearing capacity of the moment decreases linearly with the increase of the bearing capacity of horizontal load. Under the same load eccentricity, the bearing capacity of the moment increases linearly with the increase of the bearing capacity of horizontal load. The results reveal the failure mode and bearing capacity of the composite bucket foundation breakwater, and provides reference for the optimal design of the structure.
  • [1]
    MUSTAPA M A, YAAKOB O B, AHMED Y M, et al. Wave energy device and breakwater integration: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 43-58. doi: 10.1016/j.rser.2017.03.110
    [2]
    KOLEY S, SAHOO T. Wave interaction with a submerged semicircular porous breakwater placed on a porous seabed[J]. Engineering Analysis with Boundary Elements, 2017, 80: 18-37. doi: 10.1016/j.enganabound.2017.02.019
    [3]
    OUMERACI H. 1994. Review and analysis of vertical breakwater failures—lessons learned[J]. Coastal Engineering, 1994, 22(1/2): 3-39.
    [4]
    闫澍旺, 侯晋芳, 刘润, 等. 长江口导堤在波浪荷载作用下的稳定性研究[J]. 岩石力学与工程学报, 2006, 25(增1): 3245-3249. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1100.htm

    YAN Shu-wang, HOU Jin-fang, LIU Run, et al. Stability analysis of guide dike in Yangtze estuary under action of wave load[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3245-3249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1100.htm
    [5]
    蔡正银, 杨立功, 何勇, 等. 新型桶式基础防波堤下沉分析及其对稳定性的影响[J]. 岩土工程学报, 2016, 38(12): 2287-2294. doi: 10.11779/CJGE201612018

    CAI Zheng-yin, YANG Li-gong, HE Yong, et al. Installation of new bucket foundation breakwater and its influence on stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2287-2294. (in Chinese) doi: 10.11779/CJGE201612018
    [6]
    肖忠, 王元战, 及春宁, 等. 筒型基础防波堤稳定性有限元数值分析[J]. 土木工程学报, 2009, 42(7): 828-833. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200907024.htm

    XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, et al. Finite element analysis of the stability of bucket foundation breakwater[J]. China Civil Engineering Journal, 2009, 42(7): 828-833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200907024.htm
    [7]
    蒋敏敏, 蔡正银, 徐光明, 等. 软土地基上箱筒型基础防波堤静力离心模型试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3865-3870. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2061.htm

    JIANG Min-min, CAI Zheng-yin, XU Guang-ming, et al. Experimental study of centrifugal model of bucket foundation breakwater on soft soil foundation under static load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3865-3870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2061.htm
    [8]
    张金来, 鲁晓兵, 王淑云, 等. 桶形基础极限承载力特性研究[J]. 岩石力学与工程学报, 2005, 24(7): 1169-1172. doi: 10.3321/j.issn:1000-6915.2005.07.014

    ZHANG Jin-lai, LU Xiao-bing, WANG Shu-yun, et al. The characteristics of the bearing capacity of bucket foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(7): 1169-1172. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.07.014
    [9]
    BRANSBY M F, YUN G J. The undrained capacity of skirted strip foundations under combined loading[J]. Géotechnique, 2009, 59(2): 115-125. doi: 10.1680/geot.2007.00098
    [10]
    WANG X, YANG X, ZENG X. Centrifuge modeling of lateral bearing behavior of offshore wind turbine with suction bucket foundation in sand[J]. Ocean Engineering, 2017, 139: 140-151. doi: 10.1016/j.oceaneng.2017.04.046
    [11]
    黎冰, 高玉峰, 沙成明, 等. 砂土中吸力式沉箱基础的最大承载力计算方法[J]. 东南大学学报(自然科学版), 2012, 42(6): 1201-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201206031.htm

    LI Bing, GAO Yu-feng, SHA Cheng-ming, et al. Calculation method for maximum bearing capacity of suction caisson foundation in sand[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(6): 1201-1205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201206031.htm
    [12]
    LIU M, YANG M, WANG H. Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand[J]. Ocean Engineering, 2014, 82: 169-179. doi: 10.1016/j.oceaneng.2014.02.034
    [13]
    刘润, 祁越, 李宝仁, 等. 复合加载模式下单桩复合筒型基础地基承载力包络线研究[J]. 岩土力学, 2016, 37(5): 1486-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605035.htm

    LIU Run, QI Yue, LI Bao-ren, et al. Failure envelopes of single-pile composite bucket foundation of offshore wind turbine under combined loading conditions[J]. Rock and Soil Mechanics, 2016, 37(5): 1486-1496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605035.htm
    [14]
    范庆来, 栾茂田. V-H-T荷载空间内海上风机桶形基础破坏包络面特性分析[J]. 土木工程学报, 2010,43(4): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201004020.htm

    FAN Qing-lai, LUAN Mao-tian. Failure envelopes of bucket foundation for offshore wind turbines in V-H-T loading space[J]. China Civil Engineering Journal, 2010, 43(4): 113-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201004020.htm
    [15]
    ZHANG J H, ZHANG L M, LU X B. Centrifuge modeling of suction bucket foundations for platforms under ice-sheet-induced cyclic lateral loadings[J]. Ocean Engineering, 2007, 34(8/9): 1069-1079.
    [16]
    ZHU B, BYRNE B W, HOULSBY G T. Long-term lateral cyclic response of suction caisson foundations in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 73-83. doi: 10.1061/(ASCE)GT.1943-5606.0000738
    [17]
    COX J A, O'LOUGHLIN C D, CASSIDY M, et al. Centrifuge study on the cyclic performance of caissons in sand[J]. International Journal of Physical Modelling in Geotechnics, 2014, 14(4): 99-115. doi: 10.1680/ijpmg.14.00016
    [18]
    KIM D J, CHOO Y W, KIM J H, et al. Investigation of monotonic and cyclic behavior of tripod suction bucket foundations for offshore wind towers using centrifuge modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 04014008-1-11.
    [19]
    杨立功, 蔡正银, 徐志峰. 新型桶式基础防波堤桶体阻力分析[J]. 岩土工程学报, 2016, 38(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604024.htm

    YANG Li-gong, CAI Zheng-yin, XU Zhi-feng. Numerical analysis of bucket resistance of new bucket foundation breakwater[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 747-754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604024.htm
    [20]
    王元战, 肖忠, 李元音, 等. 筒型基础防波堤土压力性状的有限元分析[J]. 岩土工程学报, 2009, 31(4): 622-627. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904027.htm

    WANG Yuan-zhan, XIAO Zhong, LI Yuan-yin, et al. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904027.htm
    [21]
    肖忠, 王元战, 及春宁. 基于极限平衡法的箱筒型基础防波堤稳定性分析[J]. 岩土工程学报, 2013, 35(5): 828-833. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305004.htm

    XIAO Zhong, WANG Yuan-zhan, JI Chun-ning. Stability analysis of bucket foundation breakwaters based on limit equilibrium method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 828-833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305004.htm
    [22]
    王元战, 肖忠, 迟丽华, 等. 筒型基础防波堤稳定性简化计算方法[J]. 岩土力学, 2009, 30(5): 1367-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905034.htm

    WANG Yuan-zhan, XIAO Zhong, CHI Li-hua, et al. A simplified calculation method for stability of bucket foundation breakwater[J]. Rock and Soil Mechanics, 2009, 30(5): 1367-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905034.htm
    [23]
    LOH C K, TAN T S, LEE F H. Three-dimensional excavation test[C]//Proceedings of the International Conference Centrifuge 98, 1998, Tokyo: 649-654.
    [24]
    蒋敏敏, 徐光明, 顾行文. 离心模型试验饱和黏性土制备和固结分析[C]//第25届全国土工测试学术研讨会论文集, 2008, 杭州: 375-378.

    JIANG Min-min, XU Guang-ming, GU Xing-wen. Preparation and analysis of saturated clay consolidation in centrifuge model test[C]//Proceedings of the 25th Chinese Academic Seminar on Geotechnical Soil Testing, 2008, Hangzhou: 375-378. (in Chinese)
    [25]
    VILLALOBOS F A, BYRNE B W, HOULSBY G T. An experimental study of the drained capacity of suction caisson foundations under monotonic loading for offshore applications[J]. Soils and Foundations, 2009, 49(3): 477-488.
    [26]
    HUNG L C, KIM S R, 2014. Evaluation of undrained bearing capacities of bucket foundations under combined loads[J]. Marine Georesources & Geotechnology, 2014, 32(1): 76-92.
    [27]
    DING H, LIU Y, ZHANG P. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean Engineering, 2015(103): 114-122.
    [28]
    LEBLANC C, HOULSBY G T, BYRNE B W. Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90.
    [29]
    郑刚, 俞丹瑶, 程雪松, 等. 考虑土体强度不均匀性时宽窄基坑坑底隆起稳定研究[J]. 岩土工程学报, 2019, 41(增刊1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1002.htm

    ZHENG Gang, YU Dan-yao, CHENG Xue-song, et al. Basal heave stability of wide and narrow excavations considering non-homogeneous features of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1002.htm
  • Cited by

    Periodical cited type(22)

    1. 谢朋,李葱葱,段虎辰,文海家,李良勇,李昭捷,王永卫. 隧道围岩透明相似材料强度特征与配合比研究. 湖南大学学报(自然科学版). 2025(01): 219-227 .
    2. 钱伟丰,黄明,曾子圣,王禹,胡艳峰. 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报. 2025(01): 273-288 .
    3. 应宏伟,吕忠泽. 考虑刀土摩擦的砂土盾构隧道开挖面支护压力计算方法. 中南大学学报(自然科学版). 2024(03): 1082-1091 .
    4. 夏俊偉. 砂卵石地层中地铁盾构隧道开挖面稳定性离散元数值模拟研究. 铁道勘察. 2024(02): 140-146 .
    5. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    6. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 .
    7. 刘功明,黄建坤,杜金阳,张健. 适用于植物生长的透明土制备及其性能试验. 农业工程学报. 2024(15): 76-84 .
    8. 何晟亚,李亮,李恒一,张建经,叶亮,文海家,段虎辰,谢朋. 可视化软土隧道模型试验相似材料的配置及其物理力学特性研究. 现代隧道技术. 2024(04): 202-209 .
    9. 刘维正,师嘉文,谭际鸣,董军,豆小天. 水位变化下浅埋盾构隧道开挖面渗透力与稳定性研究. 中南大学学报(自然科学版). 2024(10): 3833-3848 .
    10. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 .
    11. 卜璟,王琛. 基于透明土试验技术的盾构侧穿桩基影响机制研究. 江苏建筑. 2023(02): 67-72 .
    12. 雷华阳,刘敏,钟海晨,许英刚,袁大军. 黏土地层盾构隧道开挖面失稳离心试验及数值模拟. 天津大学学报(自然科学与工程技术版). 2023(05): 503-512 .
    13. 苏占东,周思哲,王成虎,孙进忠,曾扬农,张建勇,张明磊,王磊,朱卓辉,李小瑞. 工程岩体物理模拟研究中实验材料的选择与应用. 地质论评. 2023(03): 1133-1149 .
    14. 谢丽辉,丁军军. 上软下硬地层盾构隧道开挖面稳定性数值模拟研究. 城市道桥与防洪. 2023(05): 195-199+24-25 .
    15. 李同海. 考虑断层边界影响的盾构掘进安全距离界定方法. 福建交通科技. 2023(04): 60-64 .
    16. 汪联欢. 消力池开挖施工对临近泄洪洞安全性的影响. 水利科学与寒区工程. 2023(11): 133-137 .
    17. 雷华阳,刘敏,程泽宇,钟海晨. 透明黏土盾构隧道开挖面失稳扩展过程和失稳特征研究. 岩石力学与工程学报. 2022(06): 1235-1245 .
    18. 王均山,衣凡,连文博,张建铭,何志伟,谢育杨,仲志武,程雪松. 软土地区地铁盾构隧道引发地表沉陷实例研究. 建筑结构. 2022(S1): 2871-2877 .
    19. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 .
    20. 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述. 隧道与地下工程灾害防治. 2022(03): 31-46 .
    21. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看
    22. 刘朝钦. 软弱地层超大矩形顶管盾构隧道开挖面稳定性研究. 高速铁路技术. 2022(06): 36-40 .

    Other cited types(23)

Catalog

    Article views PDF downloads Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return