• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MENG Guo-tao, HE Shi-hai, CHEN Jian-lin, WU Jia-yao, CHEN Ping-zhi, DUAN Xin-ping. Mechanism of deep deformation of roof arch of underground powerhouse at right bank of Baihetan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 576-583. DOI: 10.11779/CJGE202003020
Citation: MENG Guo-tao, HE Shi-hai, CHEN Jian-lin, WU Jia-yao, CHEN Ping-zhi, DUAN Xin-ping. Mechanism of deep deformation of roof arch of underground powerhouse at right bank of Baihetan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 576-583. DOI: 10.11779/CJGE202003020

Mechanism of deep deformation of roof arch of underground powerhouse at right bank of Baihetan Hydropower Station

More Information
  • Received Date: March 18, 2019
  • Available Online: December 07, 2022
  • In the process of the excavation of underground powerhouse caverns at the right bank of Baihetan Hydropower Station, which is the world largest underground powerhouse in term of span, the surrounding rock at the roof arch from section 0 + 076 m to 0+133 m shows a continuous time-dependent deformation 17~26 m in depth from the excavation surface. The total deformation magnitude is 35 to 55 mm, and the deformation increments of 0~17 m in depth are synchronous. The special deformation becomes the most concerned rock mechanics problem of feedback analysis during the construction. On the basis of summarizing the monitoring layout and the results of arch displacement of the powerhouse, the spatial distribution characteristics of surrounding rock deformation are intuitively demonstrated by GoCAD interpolation of the monitoring results of multi-point displacement meter, and the particularity deformation mode of roof arch is explained. Then, base on FLAC3D numerical analysis, the distribution characteristics of stress concentration, fracture expansion and time-dependent deformation of the surrounding rock of the cavern groups are discussed, and the formation mechanism of deep deformation is explained. Moreover, the failure phenomenon of the surrounding rock and the displacement monitoring of dense quasi-distributed grating fiber are used to verify the deformation mechanism. Finally, the stability of the surrounding rock of the roof arch with the phenomenon of deep deformation is evaluated. The research shows that the stress concentration level of the surrounding rock at the floor of the anchored tunnel above the roof arch of the powerhouse is greater than the crack initiation strength of the rock, and the fracture extension of the shallow rock mass causes the time-dependent deformation of the surrounding rock. Thus, the end of the installation base of multi-point displacement meter embedded in the excavation damage zone at the floor of the anchored tunnel is lifted, which indirectly results in synchronous and constant displacement increment at different depth measurement points of the multi-point displacement meter, thus showing the so-called deep deformation phenomenon. The research results may provide a reasonable explanation for the deformation monitoring mechanism of the surrounding rock of the roof arch and valuable technical support for the stability evaluation of the surrounding rock.
  • [1]
    孟国涛, 樊义林, 江亚丽, 等. 白鹤滩水电站巨型地下洞室群关键岩石力学问题与工程对策研究[J]. 岩石力学与工程学报, 2016, 35(12): 2549-2560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612020.htm

    MENG Guo-tao, FAN Yi-lin, JIANG Ya-li, et al. Key rock mechanical problems and measures for huge caverns of Baihetan hydropower plant[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2549-2560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612020.htm
    [2]
    李仲奎, 周钟, 汤雪峰, 等. 锦屏一级水电站地下厂房洞室群稳定性分析与思考[J]. 岩石力学与工程学报, 2009, 28(11): 2167-2175. doi: 10.3321/j.issn:1000-6915.2009.11.002

    LI Zhong-kui, ZHOU Zhong, TANG Xue-feng, et al. Stability analysis and considerations of underground powerhouse caverns group of Jinping I hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(11): 2167-2175. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.11.002
    [3]
    李彪, 徐奴文, 戴峰, 等. 乌东德水电站地下厂房开挖过程微震监测与围岩大变形预警研究[J]. 岩石力学与工程学报, 2017, 26(增刊2): 4102-4112.

    LI Biao, XU Nu-wen, DAI Feng, et al. Microseismic monitoring and large deformation forecasting research during excavation of underground powerhouse at Wudongde hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 26(S2): 4102-4112. (in Chinese)
    [4]
    陈菲, 何川, 邓建辉. 高地应力定义及其定性定量判据[J]. 岩土力学, 2015, 36(4): 971-980. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504010.htm

    CHEN Fei, HE Chuan, DENG Jian-hui. Concept of high geostress and its qualitative and quantitative definitions[J]. Rock and Soil Mechanics, 2015, 36(4): 971-980. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504010.htm
    [5]
    CAI M, KAISER P K. Assessment of excavation damaged zone using a micromechanics model[J]. Tunnelling and Underground Space Technology, 2005, 20(4): 301-310. doi: 10.1016/j.tust.2004.12.002
    [6]
    刘健, 朱赵辉, 蔡浩, 等. 超大型地下洞室拱圈围岩变形、破坏特性研究[J]. 岩土工程学报, 2018, 40(7): 1257-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807015.htm

    LIU Jian, ZHU Zhao-hui, CAI Hao, et al. Deformation and failure characteristics of top arch surrounding rock of super large underground caverns[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1257-1267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807015.htm
    [7]
    江权, 樊义林, 冯夏庭, 等. 高应力下硬岩卸荷破裂:白鹤滩水电站地下厂房玄武岩开裂观测实例分析[J]. 岩石力学与工程学报, 2017, 36(5): 1076-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705004.htm

    JIANG Quan, FAN Yilin, FENG Xia-ting, et al. Unloading break of hard rock under high geo-stress condition: inner cracking observation for the basalt in the Baihetan underground powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1076-1087. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705004.htm
    [8]
    毛承英, 李海, 杨先杰. 基于GOCAD的岩溶探测地震CT波速参数三维可视化的实现[J]. 铁路工程, 2017(4): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJT201704030.htm

    MAO Cheng-ying, LI Hai, YANG Xian-jie. Realizatoin of 3D visualization of seismic CT wave velocity parameters of GOCAD based karst detection[J]. Railway Engineering, 2017(4): 104-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJT201704030.htm
    [9]
    Itasca Consulting Group Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User's Manual Version 5.01[M]. Minneapolis: Itasca Consulting Group Inc, 2013: 180-189.
    [10]
    周辉, 卢景景, 徐荣超, 等. 深埋硬岩隧洞围岩板裂化破坏研究的关键问题及研究进展[J]. 岩土力学, 2015, 36(10): 2737-2749. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510001.htm

    ZHOU Hui, LU Jing-jing, XU Rong-chao, et al. Critical problems of study of slabbing failure of surrounding rock in deep hard rock tunnel and research progress[J]. Rock and Soil Mechanics, 2015, 36(10): 2737-2749. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510001.htm
    [11]
    徐东升. 一种新型光纤光栅局部位移计在小应变测量中的应用[J]. 岩土工程学报, 2017, 39(7): 1330-1335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707025.htm

    XU Dong-sheng. New fiber Bragg grating sensor-based local displacement transducer for small strain measurements of soil specimens[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1330-1335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707025.htm
    [12]
    POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock[J]. Int J Rock Mech Min Sci, 2007, 44: 677-691.
    [13]
    张建海, 王仁坤, 周钟, 等. 基于时效变形的脆性围岩最优支护时机研究[J]. 岩土工程学报, 2017, 39(10): 1908-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710027.htm

    ZHANG Jian-hai, WANG Ren-kun, ZHOU Zhong, et al. Optimum support time of brittle underground cavern based on time-dependent deformation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1908-1914. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710027.htm
  • Related Articles

    [1]ZHANG Chong, LIU Xiaoqiang, HU Xuan, ZHANG Jing, PAN Yanfang, WEI Wei, JIANG Qinghui. Deformation mechanism and reinforcement treatment of right abutment high slope of Yebatan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 477-486. DOI: 10.11779/CJGE20231188
    [2]ZHOU Zhi-fang, LI Si-jia, WANG Zhe, GUO Qiao-na, SHI An-chi, CHEN Meng, SHEN Qi. Determination of nonlinear permeability parameters for shear zones in Baihetan Hydropower Station by in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 430-437. DOI: 10.11779/CJGE202003004
    [3]QIAN Bo, YANG Ying, XU Nu-wen, DAI Feng, ZHOU Jia-wen, FAN Yi-lin, XU Jian. Feedback analysis of rock damage deformation of slope at left bank of Baihetan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1464-1471. DOI: 10.11779/CJGE201908010
    [4]LIU Jian, ZHU Zhao-hui, CAI Hao, SHANGGUAN Jin, LI Xiu-wen. Deformation and failure characteristics of top arch surrounding rock of super large underground caverns[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1257-1267. DOI: 10.11779/CJGE201807012
    [5]LIU Bo, NIU Yun-hua, WANG Ke, DAI De-fu. Characteristic analysis and control measures for debris flow in Baitan Gully of Wudongde Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 225-230. DOI: 10.11779/CJGE2016S1042
    [6]SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, QIN Yuan. Numerical simulation and assessment of seepage control effects on surrounding fractured rocks of underground powerhouse in Jinchuan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 786-797. DOI: 10.11779/CJGE201605003
    [7]ZHU Guo-sheng, CUI Hao-dong, ZHANG Jia-fa, SHENG Xiao-tao. Seepage control measures for dam foundation and underground powerhouse caverns at right bank of Wudongde Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1722-1727.
    [8]WANG Deng-yin, CHEN Zhen-wen, TANG Yang, QI Li-jing. Behaviors of high broken line concrete face rockfill dam of Bashan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1483-1489.
    [9]HE Jiangda, XIE Hongqiang, WANG Qizhi, XIAO Mingli. Inversion analysis of initial geostress in dam site of Guandi Hydropower Project[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 166-171.
    [10]PAN Wei, LIU Daan, GUO Huafeng, CHENG Dongxing, ZHONG Huiya, LIU Xinzhong. Study on 3D geological modeling in VII dam site of Xiangjiaba Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 82-87.
  • Cited by

    Periodical cited type(12)

    1. 李春辉,任哲明,王洪洋,刘天鹏. 地应力对地下厂房围岩稳定性影响的三维有限元分析. 陕西水利. 2024(01): 12-15 .
    2. 沈俊良. 基于动态反馈分析支护受力超限评价. 大坝与安全. 2024(05): 29-33 .
    3. 任韬哲,吕风英,何军,张雨霆. 地下洞室施工期顶拱变形破坏机理及处置对策研究. 水电能源科学. 2024(12): 139-142+170 .
    4. 裴书锋,江权,樊义林,李晓轩,段杭. 高应力大直径圆筒形洞室围岩变形破坏特征与失效机制. 岩土工程学报. 2023(01): 171-180 . 本站查看
    5. 王兰普,吕凤英,王波,黄子康. 丰宁抽水蓄能电站二期地下厂房施工期围岩变形规律分析. 水电与抽水蓄能. 2023(02): 106-114 .
    6. 张石磊,朱赵辉,段杭,田振华. 高应力地下洞室顶拱深部变形及受力特性研究. 地下空间与工程学报. 2022(01): 341-350 .
    7. 姜兆阳,蒲江涌,王宇恒. 太平矿业矽卡岩巷道地压监测及地压规律研究. 现代矿业. 2022(03): 211-215 .
    8. 张强,郑理峰,宋萌,李梅,贾朝军. 基于热力学框架的碳质页岩弹塑性各向异性损伤模型研究. 现代隧道技术. 2022(05): 1-9 .
    9. 张石磊,田振华. 基于滑动测微计的高地应力洞室围岩变形研究. 岩土工程技术. 2022(06): 437-442 .
    10. 王波,黄子康,王兰普,马雨峰,孔张宇,吕风英. 丰宁抽水蓄能电站地下厂房施工期洞室群围岩变形机理研究. 华北科技学院学报. 2022(05): 42-54 .
    11. 和江涛,唐青山,王刚,龚航里,宋磊博. 大渡河双江口水电站地下厂房岩锚梁爆破开挖设计. 水利水电快报. 2022(12): 55-62 .
    12. 于秀英. 引水隧洞进口软弱基底加固措施优选研究. 东北水利水电. 2021(10): 56-58 .

    Other cited types(5)

Catalog

    Article views (287) PDF downloads (180) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return