Citation: | ZHOU Zhi-fang, LI Si-jia, WANG Zhe, GUO Qiao-na, SHI An-chi, CHEN Meng, SHEN Qi. Determination of nonlinear permeability parameters for shear zones in Baihetan Hydropower Station by in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 430-437. DOI: 10.11779/CJGE202003004 |
[1] |
刘健, 朱赵辉, 蔡浩, 等. 超大型地下洞室拱圈围岩变形、破坏特性研究[J]. 岩土工程学报, 2018, 40(7): 1257-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807015.htm
LIU Jian, ZHU Zhao-hui, CAI Hao, et al. Deformation and failure characteristics of top arch surrounding rock of super large underground caverns[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1257-1267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807015.htm
|
[2] |
赵恺, 王环玲, 徐卫亚, 等. 贯通充填裂隙类岩石渗流特性试验研究[J]. 岩土工程学报, 2017, 39(6): 1130-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706025.htm
ZHAO Kai, WANG Huan-ling, XU Wei-ya, et al. Experimental study on seepage characteristics of rock-like materials with consecutive and filling fractures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1130-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706025.htm
|
[3] |
BASAK P, MADHAV M R. Analytical solutions to the problems of transient drainage through trapezoidal embankments with Darcian and non-Darcian flow[J]. Journal of Hydrology, 1979, 41: 49-57. doi: 10.1016/0022-1694(79)90104-5
|
[4] |
CHEN C, WAN J, ZHAN H. Theoretical and experimental studies of coupled seepage pipe flow to a horizontal well[J]. Journal of Hydrology, 2003, 281: 159-171. doi: 10.1016/S0022-1694(03)00207-5
|
[5] |
KOHL T, EVANS K F, HOPKIRK R J, et al. Observation and simulation of non-Darcian flow transients in fractured rock[J]. Water Resources Research, 1997, 33(3): 407-418. doi: 10.1029/96WR03495
|
[6] |
QIAN J, ZHAN H, ZHAO W, et al. Experimental study of turbulent unconfined groundwater flow in a single fracture[J]. Journal of Hydrology, 2005, 311: 134-142. doi: 10.1016/j.jhydrol.2005.01.013
|
[7] |
QIAN J, ZHAN H, ZHAO W, et al. Experimental evidence of scale-dependent hydraulic conductivity for fully developed turbulent flow in a single fracture[J]. Journal of Hydrology, 2007, 339: 206-215. doi: 10.1016/j.jhydrol.2007.03.015
|
[8] |
邓英尔, 谢和平, 黄润秋, 等. 饱和黏土非线性渗流规律与径向固结[J]. 应用数学和力学, 2007, 28(11): 1272-1280.
DENG Ying-er, XIE He-ping, HUANG Run-qiu, et al. Law of nonlinear flow in saturated clays and radial consolidation[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1272-1280. (in Chinese)
|
[9] |
SEN Z. Non-Darcian flow in fractured rocks with a linear flow pattern[J]. Journal of Hydrology, 1987, 92: 43-57. doi: 10.1016/0022-1694(87)90088-6
|
[10] |
SEN Z. Type curves for two-region well flow[J]. Journal of Hydrology Engineering, ASCE, 1988, 114(12): 1461-1484. doi: 10.1061/(ASCE)0733-9429(1988)114:12(1461)
|
[11] |
SEN Z. Analytical solution incorporating nonlinear radial flow in confined aquifers[J]. Water Resources Research, 1988, 24(4): 601-606. doi: 10.1029/WR024i004p00601
|
[12] |
SEN Z. Nonlinear flow toward wells[J]. Journal of Hydrology Engineering, ASCE, 1989, 115(2): 193-209. doi: 10.1061/(ASCE)0733-9429(1989)115:2(193)
|
[13] |
SEN Z. Nonlinear radial flow in confined aquifers toward large-diameter wells[J]. Water Resources Research, 1990, 26(5): 1103-1109.
|
[14] |
WEN Z, HUANG G, ZHAN H. Non-Darcian flow in a single confined vertical fracture toward a well[J]. Journal of Hydrology, 2006, 330: 698-708. doi: 10.1016/j.jhydrol.2006.05.001
|
[15] |
WEN Z, HUANG G, ZHAN H. Non-Darcian flow toward a Finite-Diameter vertical well in a confined aquifer[J]. Pedosphere, 2008, 18(3): 288-303. doi: 10.1016/S1002-0160(08)60019-3
|
[16] |
WEN Z, HUANG G, ZHAN H. Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation[J]. Hydrogeology Journal, 2011, 19: 563-572. doi: 10.1007/s10040-011-0709-2
|
[17] |
WEN Z, LIU K, ZHAN H. Non-Darcian flow toward a larger-diameter partially penetrating well in a confined aquifer[J]. Environmental Earth Sciences, 2014, 72: 4617-4625. doi: 10.1007/s12665-014-3359-6
|
[18] |
WEN Z, HUANG G, ZHAN H. A numerical solution for Non-Darcian flow to a well in a confined aquifer using the power law function[J]. Journal of Hydrology, 2009, 364: 99-106. doi: 10.1016/j.jhydrol.2008.10.009
|
[19] |
CAMACHO V R G, SQUEZ C M. Comment on “Analytical solution incorporating nonlinear radial flow in confined aquifers” by Zekâi Sen[J]. Water Resources Research, 1992, 28(12): 3337-3338. doi: 10.1029/92WR01646
|
[20] |
WEN Z, HUANG G, ZHAN H. Non-Darcian flow to a well in an aquifer-aquitard system[J]. Advances in Water Resources, 2008, 31: 1754-1763. doi: 10.1016/j.advwatres.2008.09.002
|
[21] |
WEN Z, HUANG G, ZHAN H. Solutions for Non-Darcian flow to an extended well in fractured rock[J]. Ground Water, 2011, 49: 280-285. doi: 10.1111/j.1745-6584.2010.00728.x
|
[22] |
MATHIAS S A, BUTLER A P, JACKSON B M, et al. Transient simulations of flow and transport in the Chalk unsaturated zone[J]. Journal of Hydrology, 2006, 330(1): 10-28.
|
[23] |
CHOI E S, CHEEMA T, ISLAM M R. A new dual-porosity/dual-permeability model with non-Darcian flow through fractures[J]. Journal of Petroleum Science & Engineering, 1997, 17(3/4): 331-344.
|
[24] |
WU Y S. An approximate analytical solution for non-Darcy flow toward a well in fractured media[J]. Water Resources Research, 2002, 38(3): 47-53.
|
[25] |
WU Y S. Numerical simulation of single-phase and multiphase non-darcy flow in porous and fractured reservoirs[J]. Transport in Porous Media, 2002, 49(2): 209-240. doi: 10.1023/A:1016018020180
|
[26] |
EWING R E, LIN Y. A mathematical analysis for numerical well models for non-Darcy flows[J]. Applied Numerical Mathematics, 2001, 39(1): 17-30. doi: 10.1016/S0168-9274(01)00042-3
|
[27] |
EWING R E, LAZAROV R D, LYONS S L, et al. Numerical well model for non-Darcy flow through isotropic porous media[J]. Computational Geosciences, 1999, 3(3/4): 185-204. doi: 10.1023/A:1011543412675
|
[28] |
KOLDITZ O. Non-linear flow in fractured rock[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2001, 11(6): 547-575.
|
[29] |
周志芳, 王仲夏, 曾新翔. 岩土体渗透性参数现场快速测试系统开发[J]. 岩石力学与工程学报, 2008, 27(6): 1292-1296. doi: 10.3321/j.issn:1000-6915.2008.06.026
ZHOU Zhi-fang, WANG Zhong-xia, ZENG Xin-xiang. Development of rapid field test system for determining permeable of rock and soil masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1292-1296. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.06.026
|
[30] |
周志芳, 庄超, 戴云峰, 等. 单孔振荡式微水试验确定裂隙岩体各向异性渗透参数[J]. 岩石力学与工程学报, 2015, 34(2): 271-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502008.htm
ZHOU Zhi-fang, ZHUANG Chao, DAI Yun-feng, et al. Determining anisotropic hydraulic conductivity in fractured rocks based on single-borehole slug tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 271-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502008.htm
|
[31] |
ZHOU Z, ZHAO Y, WANG J, et al. A Novel Apparatus for obtaining in situ estimates of anisotropism hydraulic conductivity in fractured rocks[J]. Geotechnical Testing Journal, 2016, 39(4): 525-531.
|
[32] |
胡少华, 周佳庆, 陈益峰, 等. 岩石粗糙裂隙非线性渗流特性试验研究[J]. 地下空间与工程学报, 2017, 13(1): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm
HU Shao-hua, ZHOU Jia-qing, CHEN Yi-feng, et al. Laboratory research on nonlinear flow behavior of rough fractures[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 48-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm
|
[33] |
李文亮, 周佳庆, 贺香兰, 等. 不同围压下破碎花岗岩非线性渗流特性试验研究[J]. 岩土力学, 2017, 38(增刊1): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1019.htm
LI Wen-liang, ZHOU Jia-qing, HE Xiang-lan, et al. Nonlinear flow characteristics of broken granite subject to confining pressures[J]. Rock and Soil Mechanics, 2017, 38(S1): 140-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1019.htm
|
[34] |
ZIMMERMAN R W, AL-YAARUBI A, PAIN C C, et al. Nonlinear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 163-169.
|