• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Zhi-fang, LI Si-jia, WANG Zhe, GUO Qiao-na, SHI An-chi, CHEN Meng, SHEN Qi. Determination of nonlinear permeability parameters for shear zones in Baihetan Hydropower Station by in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 430-437. DOI: 10.11779/CJGE202003004
Citation: ZHOU Zhi-fang, LI Si-jia, WANG Zhe, GUO Qiao-na, SHI An-chi, CHEN Meng, SHEN Qi. Determination of nonlinear permeability parameters for shear zones in Baihetan Hydropower Station by in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 430-437. DOI: 10.11779/CJGE202003004

Determination of nonlinear permeability parameters for shear zones in Baihetan Hydropower Station by in-situ tests

More Information
  • Received Date: June 24, 2019
  • Available Online: December 07, 2022
  • Based on the Forchheimer equation of generalized nonlinear permeability, an in-situ test method for determining the permeability parameters of nonlinear flow in shear zones is proposed. Based on the field tests of Baihetan Hydropower Station, it is found that the values and stability of nonlinear coefficient b and m are related to the filling type and structure of the shear zone. In interlaminar shear zones of C3 and C4, m=2, and the value of nonlinear coefficient b is relatively stable with little change. In interlaminar shear zone of C2, m=0.5, the value of nonlinear coefficient b is relatively stable, but the order of magnitude is much smaller than that of interlaminar shear zones of C3 and C4. The reason is that the original pore with poor connectivity of shear zone forms a dominant flow channel under the action of high-pressure water, resulting in significant increase of water volume under the same pressure. Using the nonlinear coefficients obtained from experiments into Forchheimer equation for curves and judged by calculation of influence coefficient β of nonlinearity degree, the nonlinear terms between pressure holes and test holes are absolutely dominant in the process of high-pressure water tests. The movement state of groundwater is nonlinear flow. It is shown that the distance between pressure holes and test holes and the pressure gradient change selected by the in-situ test method are suitable. The test results show that the in-situ test method of nonlinear permeability parameters of shear zones is rigorous in theory and has the advantages of simple test process, easy operation, complete parameters and high accuracy, so it has good application value.
  • [1]
    刘健, 朱赵辉, 蔡浩, 等. 超大型地下洞室拱圈围岩变形、破坏特性研究[J]. 岩土工程学报, 2018, 40(7): 1257-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807015.htm

    LIU Jian, ZHU Zhao-hui, CAI Hao, et al. Deformation and failure characteristics of top arch surrounding rock of super large underground caverns[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1257-1267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807015.htm
    [2]
    赵恺, 王环玲, 徐卫亚, 等. 贯通充填裂隙类岩石渗流特性试验研究[J]. 岩土工程学报, 2017, 39(6): 1130-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706025.htm

    ZHAO Kai, WANG Huan-ling, XU Wei-ya, et al. Experimental study on seepage characteristics of rock-like materials with consecutive and filling fractures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1130-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706025.htm
    [3]
    BASAK P, MADHAV M R. Analytical solutions to the problems of transient drainage through trapezoidal embankments with Darcian and non-Darcian flow[J]. Journal of Hydrology, 1979, 41: 49-57. doi: 10.1016/0022-1694(79)90104-5
    [4]
    CHEN C, WAN J, ZHAN H. Theoretical and experimental studies of coupled seepage pipe flow to a horizontal well[J]. Journal of Hydrology, 2003, 281: 159-171. doi: 10.1016/S0022-1694(03)00207-5
    [5]
    KOHL T, EVANS K F, HOPKIRK R J, et al. Observation and simulation of non-Darcian flow transients in fractured rock[J]. Water Resources Research, 1997, 33(3): 407-418. doi: 10.1029/96WR03495
    [6]
    QIAN J, ZHAN H, ZHAO W, et al. Experimental study of turbulent unconfined groundwater flow in a single fracture[J]. Journal of Hydrology, 2005, 311: 134-142. doi: 10.1016/j.jhydrol.2005.01.013
    [7]
    QIAN J, ZHAN H, ZHAO W, et al. Experimental evidence of scale-dependent hydraulic conductivity for fully developed turbulent flow in a single fracture[J]. Journal of Hydrology, 2007, 339: 206-215. doi: 10.1016/j.jhydrol.2007.03.015
    [8]
    邓英尔, 谢和平, 黄润秋, 等. 饱和黏土非线性渗流规律与径向固结[J]. 应用数学和力学, 2007, 28(11): 1272-1280.

    DENG Ying-er, XIE He-ping, HUANG Run-qiu, et al. Law of nonlinear flow in saturated clays and radial consolidation[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1272-1280. (in Chinese)
    [9]
    SEN Z. Non-Darcian flow in fractured rocks with a linear flow pattern[J]. Journal of Hydrology, 1987, 92: 43-57. doi: 10.1016/0022-1694(87)90088-6
    [10]
    SEN Z. Type curves for two-region well flow[J]. Journal of Hydrology Engineering, ASCE, 1988, 114(12): 1461-1484. doi: 10.1061/(ASCE)0733-9429(1988)114:12(1461)
    [11]
    SEN Z. Analytical solution incorporating nonlinear radial flow in confined aquifers[J]. Water Resources Research, 1988, 24(4): 601-606. doi: 10.1029/WR024i004p00601
    [12]
    SEN Z. Nonlinear flow toward wells[J]. Journal of Hydrology Engineering, ASCE, 1989, 115(2): 193-209. doi: 10.1061/(ASCE)0733-9429(1989)115:2(193)
    [13]
    SEN Z. Nonlinear radial flow in confined aquifers toward large-diameter wells[J]. Water Resources Research, 1990, 26(5): 1103-1109.
    [14]
    WEN Z, HUANG G, ZHAN H. Non-Darcian flow in a single confined vertical fracture toward a well[J]. Journal of Hydrology, 2006, 330: 698-708. doi: 10.1016/j.jhydrol.2006.05.001
    [15]
    WEN Z, HUANG G, ZHAN H. Non-Darcian flow toward a Finite-Diameter vertical well in a confined aquifer[J]. Pedosphere, 2008, 18(3): 288-303. doi: 10.1016/S1002-0160(08)60019-3
    [16]
    WEN Z, HUANG G, ZHAN H. Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation[J]. Hydrogeology Journal, 2011, 19: 563-572. doi: 10.1007/s10040-011-0709-2
    [17]
    WEN Z, LIU K, ZHAN H. Non-Darcian flow toward a larger-diameter partially penetrating well in a confined aquifer[J]. Environmental Earth Sciences, 2014, 72: 4617-4625. doi: 10.1007/s12665-014-3359-6
    [18]
    WEN Z, HUANG G, ZHAN H. A numerical solution for Non-Darcian flow to a well in a confined aquifer using the power law function[J]. Journal of Hydrology, 2009, 364: 99-106. doi: 10.1016/j.jhydrol.2008.10.009
    [19]
    CAMACHO V R G, SQUEZ C M. Comment on “Analytical solution incorporating nonlinear radial flow in confined aquifers” by Zekâi Sen[J]. Water Resources Research, 1992, 28(12): 3337-3338. doi: 10.1029/92WR01646
    [20]
    WEN Z, HUANG G, ZHAN H. Non-Darcian flow to a well in an aquifer-aquitard system[J]. Advances in Water Resources, 2008, 31: 1754-1763. doi: 10.1016/j.advwatres.2008.09.002
    [21]
    WEN Z, HUANG G, ZHAN H. Solutions for Non-Darcian flow to an extended well in fractured rock[J]. Ground Water, 2011, 49: 280-285. doi: 10.1111/j.1745-6584.2010.00728.x
    [22]
    MATHIAS S A, BUTLER A P, JACKSON B M, et al. Transient simulations of flow and transport in the Chalk unsaturated zone[J]. Journal of Hydrology, 2006, 330(1): 10-28.
    [23]
    CHOI E S, CHEEMA T, ISLAM M R. A new dual-porosity/dual-permeability model with non-Darcian flow through fractures[J]. Journal of Petroleum Science & Engineering, 1997, 17(3/4): 331-344.
    [24]
    WU Y S. An approximate analytical solution for non-Darcy flow toward a well in fractured media[J]. Water Resources Research, 2002, 38(3): 47-53.
    [25]
    WU Y S. Numerical simulation of single-phase and multiphase non-darcy flow in porous and fractured reservoirs[J]. Transport in Porous Media, 2002, 49(2): 209-240. doi: 10.1023/A:1016018020180
    [26]
    EWING R E, LIN Y. A mathematical analysis for numerical well models for non-Darcy flows[J]. Applied Numerical Mathematics, 2001, 39(1): 17-30. doi: 10.1016/S0168-9274(01)00042-3
    [27]
    EWING R E, LAZAROV R D, LYONS S L, et al. Numerical well model for non-Darcy flow through isotropic porous media[J]. Computational Geosciences, 1999, 3(3/4): 185-204. doi: 10.1023/A:1011543412675
    [28]
    KOLDITZ O. Non-linear flow in fractured rock[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2001, 11(6): 547-575.
    [29]
    周志芳, 王仲夏, 曾新翔. 岩土体渗透性参数现场快速测试系统开发[J]. 岩石力学与工程学报, 2008, 27(6): 1292-1296. doi: 10.3321/j.issn:1000-6915.2008.06.026

    ZHOU Zhi-fang, WANG Zhong-xia, ZENG Xin-xiang. Development of rapid field test system for determining permeable of rock and soil masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1292-1296. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.06.026
    [30]
    周志芳, 庄超, 戴云峰, 等. 单孔振荡式微水试验确定裂隙岩体各向异性渗透参数[J]. 岩石力学与工程学报, 2015, 34(2): 271-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502008.htm

    ZHOU Zhi-fang, ZHUANG Chao, DAI Yun-feng, et al. Determining anisotropic hydraulic conductivity in fractured rocks based on single-borehole slug tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 271-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502008.htm
    [31]
    ZHOU Z, ZHAO Y, WANG J, et al. A Novel Apparatus for obtaining in situ estimates of anisotropism hydraulic conductivity in fractured rocks[J]. Geotechnical Testing Journal, 2016, 39(4): 525-531.
    [32]
    胡少华, 周佳庆, 陈益峰, 等. 岩石粗糙裂隙非线性渗流特性试验研究[J]. 地下空间与工程学报, 2017, 13(1): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm

    HU Shao-hua, ZHOU Jia-qing, CHEN Yi-feng, et al. Laboratory research on nonlinear flow behavior of rough fractures[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 48-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm
    [33]
    李文亮, 周佳庆, 贺香兰, 等. 不同围压下破碎花岗岩非线性渗流特性试验研究[J]. 岩土力学, 2017, 38(增刊1): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1019.htm

    LI Wen-liang, ZHOU Jia-qing, HE Xiang-lan, et al. Nonlinear flow characteristics of broken granite subject to confining pressures[J]. Rock and Soil Mechanics, 2017, 38(S1): 140-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1019.htm
    [34]
    ZIMMERMAN R W, AL-YAARUBI A, PAIN C C, et al. Nonlinear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 163-169.

Catalog

    Article views (261) PDF downloads (244) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return