• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同路堤高度下X形桩-筏复合地基动力响应模型试验

孙广超, 孔纲强, 李建林, 罗雅

孙广超, 孔纲强, 李建林, 罗雅. 不同路堤高度下X形桩-筏复合地基动力响应模型试验[J]. 岩土工程学报, 2021, 43(S2): 45-50. DOI: 10.11779/CJGE2021S2011
引用本文: 孙广超, 孔纲强, 李建林, 罗雅. 不同路堤高度下X形桩-筏复合地基动力响应模型试验[J]. 岩土工程学报, 2021, 43(S2): 45-50. DOI: 10.11779/CJGE2021S2011
SUN Guang-chao, KONG Gang-qiang, LI Jian-lin, LUO Ya. Model tests on dynamic response of XCC pile-raft composite foundation under different embankment heights[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 45-50. DOI: 10.11779/CJGE2021S2011
Citation: SUN Guang-chao, KONG Gang-qiang, LI Jian-lin, LUO Ya. Model tests on dynamic response of XCC pile-raft composite foundation under different embankment heights[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 45-50. DOI: 10.11779/CJGE2021S2011

不同路堤高度下X形桩-筏复合地基动力响应模型试验  English Version

基金项目: 

国家自然科学基金重点国际(地区)合作研究项目 51420105013

高速铁路基础研究联合基金项目 U2034203

国家自然科学基金青年基金项目 51809151

详细信息
    作者简介:

    孙广超(1986— ),男,河南开封人,博士,主要从事桩-土相互作用方面的研究。E-mail: sgcgeo@163.com

    通讯作者:

    孔纲强, E-mail: gqkong1@163.com

  • 中图分类号: U416.1;TU473

Model tests on dynamic response of XCC pile-raft composite foundation under different embankment heights

  • 摘要: 为了明确路堤高度对桩-筏复合地基动力响应的影响,在砂土中展开了X形桩筏复合地基大比尺模型试验。在尺寸为5 m ×4 m×7 m的模型槽里,通过将4种不同的路堤高度换算成对应的恒载然后预先施加于筏板上,再在筏板上施加循环的轮轴荷载,从而得出动力响应随恒载(即路堤高度)的变化规律。试验结果表明:由于碎石垫层的存在,速度响应从筏板顶部到地基深度0 m的0.36 m范围内速度响应锐减了34%~40%。随着恒载的增加,轮轴荷载引起的筏板振动情况逐渐减弱,筏板的速度响应v'与恒载x之间的关系曲线为v'=12.648-0.519x+0.007x2;地基表层动土压力与桩顶动应力随恒载的增加均呈线性减小,其中地基表层的动土压力σsd与恒载x之间的关系曲线为σsd=7.629-0.085x,桩顶动应力σpd与恒载x之间的关系曲线为σpd=284.978-3.660x
    Abstract: In order to investigate the influences of embankment height on the dynamic response of pile-raft composite foundation, a large-scale model test on the cast-in-situ X-shaped concrete (referred to as XCC) pile-raft composite foundation is carried out in a model box of 5 m× 4 m×7 m. Four different embankment heights are modeled as the dead loads, and the cyclic wheel axle load is applied to the raft so as to obtain the dynamic response with the dead loads (i.e., embankment height). The results show that the velocity response decreases by 34% ~ 40% from the top of the raft to 0.36 m depth of foundation due to the existence of a gravel cushion. The vibration of the raft caused by the axle load decreases gradually with the increasing dead loads. The relationship between the velocity response of the raft v' and the dead load x is defined by the equation, v' = 12.648-0.519x+0.007x2. Both the dynamic soil stress on the surface of the foundation σsd and the dynamic stress at the top of the pile σpd decrease linearly with the increasing dead loads x. The former is defined by the equation σsd= 7.629-0.085x, whereas the latter is defined by σpd= 284.978-3.660x.
  • 图  1   不同路堤高度下X形桩-筏复合地基

    Figure  1.   XCC pile−raft composite foundation under different embankment heights

    图  2   试验加载示意图

    Figure  2.   Schematic diagram of test loading

    图  3   X形桩及布置示意图

    Figure  3.   Arrangement of XCC piles

    图  4   试验仪器布置示意图

    Figure  4.   Layout of instruments for model tests

    图  5   施加的正弦波荷载

    Figure  5.   Dine wave loads

    图  6   速度响应时程曲线

    Figure  6.   Time-history curves of velocity response

    图  7   速度响应与深度的关系

    Figure  7.   Vibration velocities recorded at different layers

    图  8   筏板速度响应与恒载的关系曲线

    Figure  8.   Relationship between velocity response of raft and dead load

    图  9   动土压力时程曲线

    Figure  9.   Time-history curves of dynamic soil pressure

    图  10   地基表层动土压力与恒载的关系曲线

    Figure  10.   Relationship between dynamic soil pressure of foundation surface and dead load

    图  11   桩顶动应力与恒载关系曲线

    Figure  11.   Dynamic stress of pile top versus dead load

    表  1   模型相似比

    Table  1   Similarity ratios for model

    参数相似比参数相似比
    长度/m1/5体积/m31/125
    密度/(kg·m-3)1弹性模量/MPa1
    加速度/(m·s-2)1力/kN1/5
    应力/kPa5速度/(m·s-1)1/5 
    时间/s1/5 频率/kPa5 
    下载: 导出CSV

    表  2   砂土基本物理指标

    Table  2   Physical indices of sand

    天然密度/(g·cm-3)天然含水率/%Gs不均匀系数Cu曲率系数Cc
    1.4784.082.672.420.93
    下载: 导出CSV

    表  3   试验加载工况

    Table  3   Load cases of tests

    荷载Q(t)/kN恒载x/kN振幅A/kN频率f/Hz循环次数/次
    Q(t)2051025000
    Q(t)2551025000
    Q(t)3051025000
    Q(t)3551025000
    下载: 导出CSV
  • [1] 刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报, 2016, 49(1): 96-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201601013.htm

    LIU Han-long, ZHAO Ming-hua. Review of ground improvement technical and its application in China[J]. China Civil Engineering Journal, 2016, 49(1): 96-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201601013.htm

    [2]

    HUANG M S, LIANG F Y, JIANG J. A simplified nonlinear analysis method for piled raft foundation in layered soils under vertical loading[J]. Computers and Geotechnics, 2011, 38(7): 875-882. doi: 10.1016/j.compgeo.2011.06.002

    [3] 吕文志, 俞建霖, 龚晓南. 柔性基础下桩体复合地基的解析法[J]. 岩石力学与工程学报, 2010, 29(2): 401-408. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002028.htm

    LÜ Wen-zhi, YU Jian-lin, GONG Xiao-nan. Analytical method for pile composite ground under flexible foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 401-408. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002028.htm

    [4] 曹卫平, 陈仁朋, 陈云敏. 桩承式加筋路堤桩体荷载分担比计算[J]. 中国公路学报, 2006, 19(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200606000.htm

    CAO Wei-ping, CHEN Ren-peng, CHEN Yun-min. Calculation for pile efficacy of pile-supported reinforced embankments[J]. China Journal of Highway and Transport, 2006, 19(6): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200606000.htm

    [5] 刘俊飞, 赵国堂, 马建林. 桩筏复合地基负摩阻段分析及桩土应力比计算[J]. 铁道学报, 2011, 33(7): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201107020.htm

    LIU Jun-fei, ZHAO Guo-tang, MA Jian-lin. Analysis on negative friction segment of pile-raft composite foundation and calculation of its pile-soil stress ratio[J]. Journal of the China Railway Society, 2011, 33(7): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201107020.htm

    [6] 俞建霖, 张甲林, 李坚卿, 等. 地表硬壳层对柔性基础下复合地基受力特性的影响分析[J]. 中南大学学报(自然科学版), 2015(46): 1504-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201504043.htm

    YU Jian-lin, ZHANG Jia-lin, LI Jian-qing, et al. Impacting analysis of dry crust on composite ground under flexible foundation[J]. Journal of Central South University, 2015(46): 1504-1510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201504043.htm

    [7] 张栋樑. 深厚层软土路基桩网复合结构地基沉降机理及计算方法研究[D]. 上海: 同济大学, 2007.

    ZHANG Dong-liang. Study on Settlement Mechanism and Calculation Method of Pile Net Composite Structure in Deep Soft Soil Subgrade[D]. Shanghai: Tongji University, 2007. (in Chinese)

    [8]

    SMALL J C, LIU H L S. Time-settlement behaviour of piled raft foundations using infinite elements[J]. Computers and Geotechnics, 2008, 35(2): 187-195.

    [9] 闫澍旺, 程栋栋, 侯晋芳, 等. 桩与土工加筋层对公路路堤地基承载力的影响[J]. 中国公路学报, 2008, 21(4): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804005.htm

    YAN Shu-wang, CHENG Dong-dong, HOU Jin-tang, et al. Influence of pile and geogrid on bearing capacity of highway embankment foundation[J]. China Journal of Highway and Transport, 2008, 21(4): 30-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804005.htm

    [10] 费康, 刘汉龙. 桩承式加筋路堤的现场试验及数值分析[J]. 岩土力学, 2009, 30(4): 1004-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200904030.htm

    FEI Kang, LIU Han-long. Field test study and numerical analysis of a geogrid reinforced and pile-supported embankment[J]. Rock and Soil Mechanics, 2009, 30(4): 1004-1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200904030.htm

    [11]

    LEE J H, KIM Y, JEONG S. Three-dimensional analysis of bearing behavior of piled raft on soft clay[J]. Computers and Geotechnics, 2010, 37(1/2): 103-114.

    [12] 张尤其. 行车荷载作用下桩承式加筋路堤的动力响应分析[D]. 广州: 华南理工大学, 2012.

    ZHANG You-qi. Dynamic Response Analysis of Pile Supported Reinforced Embankment Under Traffic Load[D]. Guangzhou: South China University of Technology, 2012. (in Chinese)

    [13] 陈泽松, 夏元友, 芮瑞, 等. 管桩加固软土路基的工作性状研究[J]. 岩石力学与工程学报, 2005, 24(2): 5822-5827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2096.htm

    CHENG Ze-song, XIA Yuan-you, RUI Rui, et al. Study on the working performance of tubular pile composite foundation of freeway[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(2): 5822-5827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2096.htm

    [14] 吕伟华, 缪林昌. 刚性桩复合地基桩土应力比计算方法[J]. 东南大学学报:自然科学版, 2013, 43(3): 624-628. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201303031.htm

    LÜ Wei-hua, MIAO Lin-chang. Calculation method of pile-soft stress ratio of rigid pile composite foundation[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(3): 624-628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201303031.htm

    [15] 付贵海, 魏丽敏, 邓宗伟, 等. 桩筏复合结构加固高速铁路深厚软基长期性状的现场试验研究[J]. 中南大学学报:自然科学版, 2017, 48(8): 2195-2202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201708031.htm

    FU Gui-hai, WEI Li-min, DENG Zong-wei, et al. Field test on long-term behaviors of pile-raft composite structure strengthening high-speed railway deep ground[J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2195-2202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201708031.htm

    [16] 孙广超, 刘汉龙, 孔纲强, 等. 振动波型对X形桩桩-筏复合地基动力响应影响的模型试验研究[J]. 岩土工程学报, 2016, 38(6): 1021-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606007.htm

    SUN Guang-chao, KONG Gang-qiang, LIU Han-long, et al. Model tests on effect of vibration waves on dynamic response of XCC pile-raft composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1021-1029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606007.htm

    [17]

    YIN F, ZHOU H, LIU H L, et al. Experimental and numerical analysis of XCC pile-geogrid foundation for existing expressway under traffic load[J]. International Journal of Civil Engineering, 2018, 16(10): 1371-1388.

    [18]

    YIN F, ZHOU H, LIU H L, et al. Effects of asphalt overlay on XCC pile-supported embankment vibration from a moving vehicle[J]. Soil Dynamics and Earthquake Engineering, 2018, 112: 18-23.

    [19]

    NIU T T, LIU H L, DING X M, et al. Model tests on XCC-piled embankment under dynamic train load of high-speed railways[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(3): 581-594.

    [20]

    SUN G C, KONG G Q, LIU H L, et al. Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track[J]. Canadian Geotechnical Journal, 54(9): 1340-1345.

    [21] 刘汉龙, 孙广超, 孔纲强, 等. 无砟轨道X形桩-筏复合地基动土压力分布规律试验研究[J]. 岩土工程学报, 2016, 38(11): 1933-1940. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611002.htm

    LIU Han-long, SUN Guang-chao, KONG Gang-qiang, et al. Model tests on distribution law of dynamical soil pressure of ballastless track XCC pile-raft composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1933-1940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611002.htm

图(11)  /  表(3)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  26
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回