• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于NMR技术及分形理论预测SWRC

陶高梁, 陈银, 袁波, 甘世朝, 吴小康, 朱学良

陶高梁, 陈银, 袁波, 甘世朝, 吴小康, 朱学良. 基于NMR技术及分形理论预测SWRC[J]. 岩土工程学报, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012
引用本文: 陶高梁, 陈银, 袁波, 甘世朝, 吴小康, 朱学良. 基于NMR技术及分形理论预测SWRC[J]. 岩土工程学报, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012
TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012
Citation: TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012

基于NMR技术及分形理论预测SWRC  English Version

基金项目: 国家自然科学基金项目(51209084); 湖北省教育厅科研计划项目(D20161405)及优秀中青年科技创新团队项目(T201605)
详细信息
    作者简介:

    陶高梁(1979- ),男,副教授,主要从事土体孔隙结构及非饱和土等研究工作。E-mail:tgl1979@126.com。

Predicting soil-water retention curve based on NMR technology and fractal theory

  • 摘要: 土-水特征曲线(SWRC)是非饱和土力学中的基础本构关系,在研究非饱和土强度、体变及渗透系数等方面具有重要作用。通过试验直接测量SWRC,耗时较长,且通常得到的只是离散数据点,缺乏连续性,不能完全满足非饱和土研究的需要,因此,通过间接方法快速预测SWRC的完整数学表达式具有实际意义。以无损伤的核磁共振(nuclear magnetic resonance)技术为基础,结合Young-Laplace理论,建立基质吸力ψT2值的关系式;利用分形理论,推导出质量含水率wT2值的关系式,最终建立了预测SWRC的数学模型,研究结果表明其预测结果与实测值吻合较好。
    Abstract: It has been recognized that the soil-water retention curve (SWRC) is a fundamental constitutive relationship of unsaturated soil mechanics, which plays a decisive role in the researches on the strength, volume change and permeability coefficient of unsaturated soils. The direct experimental methods for measuring the SWRC are time-consuming, and they usually provide some discrete data points which are short of sufficient continuity, thus they cannot completely meet the needs of researches on unsaturated soils. So, it is necessary to fast obtain the complete mathematical expression for SWRCs by using the indirect method. Based on the non-invasive nuclear magnetic resonance (NMR) technology, the relationship between matric suction ψ and relaxation time T2 is established by using the Young-Laplace theory. Then, by using the fractal theory, an expression for the relationship between mass water content w and relaxation time T2 is derived. On this basis, a specific NMR-fractal method is promoted to predict SWRCs. The experimental results show good agreement with the predicted values by the proposed fractal method.
  • [1] ARYA L M, PARI J F.A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023-1030.
    [2] 刘士雨, 俞缙, 蔡燕燕, 等. 基于土壤物理特性扩展技术的土水特征曲线预测方法[J]. 岩土工程学报, 2017, 39(5): 924-931.
    (LIU Shi-yu, YU Jin, CAI Yan-yan, et al.Prediction of soil water characteristic curve using physically based scaling technique[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 924-931. (in Chinese))
    [3] SIMMS P H, YANFUL E K.Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil water characteristic curve tests[J]. Canadian Geotechnical Journal, 2001, 38(4): 741-754.
    [4] SIMMS P H, YANFUL E K.A pore-network model for hydromechanical coupling in unsaturated compacted clayey soils[J]. Canadian Geotechnical Journal, 2005, 42(2): 499-514.
    [5] 张雪东, 赵成刚, 刘艳, 等. 变形对土水特征曲线影响规律模拟研究[J]. 土木工程学报, 2011(7): 119-126.
    (ZHANG Xue-dong, ZHAO Cheng-gang, LIU Yan, et al.Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011(7): 119-126. (in Chinese))
    [6] 胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451-1462.
    (HU Ran, CHEN Yi-feng, ZHOU Chuang-bing.A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese))
    [7] NOH J H, LEE S R, PARK H.Prediction of cryo-SWCC during freezing based on pore-size distribution[J]. International Journal of Geomechanics, 2012, 12(4): 428-438.
    [8] 侯晓坤, 李同录, 谢萧, 等. 甘肃Q3原状黄土的微观结构对其土-水特征曲线的影响[J]. 水利学报, 2016, 47(10): 1307-1314.
    (HOU Xiao-kun, LI Tong-lu, XIE Xiao, et al.Effect of undisturbed Q3 loess’s microstructure on its SWCC[J]. Journal of Hydraulic Engineering, 2016, 47(10): 1307-1314. (in Chinese))
    [9] 徐永福, 董平. 非饱和土的水分特征曲线的分形模型[J]. 岩土力学, 2002, 23(4): 400-405.
    (XU Yong-fu, DONG Ping.Fractal model for the soil-water characteristics of unsaturated soils[J]. Rock and Soil Mechanics, 2002, 23(4): 400-405. (in Chinese))
    [10] RUSSEL A R.How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas[J]. Géotechnique, 2014, 64(5): 379-390.
    [11] KHALILI N, KHOSHGHALB A, PASHA A Y.A fractal model for volume change dependency of the water retention curve[J]. Géotechnique, 2015, 65(2): 1-6.
    [12] 张超谟, 陈振标, 张占松, 等. 基于核磁共振T2谱分布的储层岩石孔隙分形结构研究[J]. 石油天然气学报, 2007, 29(4): 80-86.
    (ZHANG Chao-mo, CHEN Zhen-biao, ZHANG Zhan-song, et al.Fractal characteristics of reservoir rock pore structure based on NMR T2 distribution[J]. Journal of Oil and Gas Technology, 2007, 29(4): 80-86. (in Chinese))
    [13] 陶高梁, 孔令伟, 肖衡林, 等. 土-水特征曲线的分形特性及其分析拟合[J]. 岩土力学, 2014, 35(9): 2443-2447.
    (TAO Gao-liang, KONG Ling-wei, XIAO Heng-lin, et al.Fractal characteristics and fitting analysis of soil-water characteristic curves[J]. Rock and Soil Mechanics, 2014, 35(9): 2443-2447. (in Chinese))
    [14] 陶高梁, 柏亮, 袁波, 等. 土-水特征曲线与核磁共振曲线的关系[J]. 岩土力学, 2018, 39(3): 943-948.
    (TAO Gao-liang, BAI Liang, YUAN Bo, et al.Study of relationship between soil-water characteristic curve and NMR curve[J]. Rock and Soil Mechanics, 2018, 39(3): 943-948. (in Chinese))
    [15] 孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(11): 3217-3231.
    (SUN De-an.Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. Rock and Soil Mechanics, 2009, 30(11): 3217-3231. (in Chinese))
    [16] KORRINGA J, SEEVERS D O, TORREY H C.Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers[J]. Physical Review, 1962, 127(4): 1143-1150.
    [17] 张季如, 陶高梁, 黄丽, 等. 表征孔隙孔径分布的岩土体孔隙率模型及其应用[J]. 科学通报, 2010, 55(27): 2761-2770.
    (ZHANG Ji-ru, TAO Gao-liang, HUANG Li, et al.Porosity models for determining the pore-size distribution of rocks and soils and their applications[J]. Chinese Science Bulletin, 2010, 55(27): 2761-2770. (in Chinese))
    [18] TAO G L, ZHANG J R.Two categories of fractal models of rock and soil expressing volume and size-distribution of pores and grains[J]. Chinese Science Bulletin, 2009, 54(23): 4458-4467.
    [19] 陶高梁, 李进, 庄心善, 等. 利用土中水分蒸发特性和微观孔隙分布规律确SWCC残余含水率[J]. 岩土力学, 2018, 39(4): 1256-1262.
    (TAO Gao-liang, LI Jin, ZHUANG Xin-shan, et al.Determination of the SWCC residual water content based on the soil moisture evaporation properties and micro pore characteristics[J]. Rock and Soil Mechanics, 2018, 39(4): 1256-1262. (in Chinese))
  • 期刊类型引用(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 . 百度学术
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 . 百度学术
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 . 百度学术
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 . 百度学术
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 . 百度学术
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 . 百度学术
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 . 百度学术
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 . 百度学术
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  367
  • HTML全文浏览量:  12
  • PDF下载量:  402
  • 被引次数: 22
出版历程
  • 收稿日期:  2017-07-24
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回