• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

可液化场地框架式地铁车站结构振动台模型试验与数值模拟的对比分析

黄营, 陈国兴, 戚承志, 杜修力

黄营, 陈国兴, 戚承志, 杜修力. 可液化场地框架式地铁车站结构振动台模型试验与数值模拟的对比分析[J]. 岩土工程学报, 2013, 35(zk2): 471-478.
引用本文: 黄营, 陈国兴, 戚承志, 杜修力. 可液化场地框架式地铁车站结构振动台模型试验与数值模拟的对比分析[J]. 岩土工程学报, 2013, 35(zk2): 471-478.
HUANG Ying, CHEN Guo-xing, QI Cheng-zhi, DU Xiu-li. Comparative analysis between shaking table model test and numerical simulation of frame subway station structure in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 471-478.
Citation: HUANG Ying, CHEN Guo-xing, QI Cheng-zhi, DU Xiu-li. Comparative analysis between shaking table model test and numerical simulation of frame subway station structure in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 471-478.

可液化场地框架式地铁车站结构振动台模型试验与数值模拟的对比分析  English Version

基金项目: 国家自然科学基金重大研究计划集成项目(91215301)
详细信息
    作者简介:

    黄 营(1986- ),男,山东济宁人,硕士研究生,主要从事地下结构抗震研究。E-mail: hying4189@163.com。

  • 中图分类号: TU352;U311.4

Comparative analysis between shaking table model test and numerical simulation of frame subway station structure in liquefiable ground

  • 摘要: 根据可液化地基土-地铁车站结构动力相互作用大型振动台模型试验结果,以ABAQUS软件为平台,将地基土-地铁车站结构体系视为平面应变问题,采用动塑性损伤模型描述地铁车站结构混凝土的动力特性,采用修正的Davidenkov黏弹性动力本构模型和孔压应变模型分别描述土体的动力非线性特性和孔隙水压力的发展过程,建立地基土-地铁车站结构非线性动力相互作用有限元分析模型。对不同试验工况下地基土-地铁车站结构体系的地震反应进行数值模拟,分别与试验结果进行了对比分析。结果表明:模拟值与试验值基本一致,呈现出相似的规律性,相互验证了数值模拟结果和振动台试验结果的正确性。
    Abstract: Based on the results of the large shaking table test on frame subway station structure in liquefiable ground, considering the influence of the soil-structure nonlinear dynamic interaction by 2D finite element method, the nonlinear dynamic interaction of soil-subway station is modeled by ABAQUS software. In the modeling, the dynamic plastic-damage model is used to simulate the dynamic characteristics of station concrete, the modified Devidenkov viscoelastic constitutive model is used to simulate the dynamic characteristics of soil, and the dynamic pore water pressure strain model is used to simulate the development of pore water pressure. The seismic response of soil and subway station system under different test conditions is analyzed by means of the numerical simulation method. And then, the simulated results and the shaking table test records are compared. The results show that the simulated results are basically identical with the shaking table test records. So that, the modeling results and the shaking table test results are proved to be correct.
  • [1] HAMADA M, ISOYAMA R, WAKAMATSU K. Liquefaction induced ground displacement and its related damage to lifeline facilities[J]. Soils and Foundations, 1996, 36(1): 81-97.
    [2] 刘华北, 宋二祥. 可液化土中地铁结构的地震响应[J]. 岩土力学, 2005, 26(3): 381-391. (LIU Hua-bei, SONG Er-xiang. Earthquake induced liquefaction response of subway structure in liquefiable soil[J]. Rock and Soil Mechanics, 2005, 26(3): 381-391. (in Chinese))
    [3] 刘华北, 宋二祥. 埋深对地下结构地震液化响应的影响 [J]. 清华大学学报(自然科学版), 2005, 45(3): 301-305. (LIU Hua-bei, SONG Er-xiang. Effects of burial depth on the liquefaction response of underground structures during an earthquake excitation[J]. J Tsinghua Univ(Sci﹠Tech), 2005, 45(3): 301-305. (in Chinese))
    [4] PAOLO N, ROBERTO P, STEFANIA P, et al. Large scale soil-structure interaction experiments on sand under cyclic loading[C]// Proceedings of the 12th World Conference on Earthquake Engineering. New Zealand: New Zealand Society for Earthquake Engineering, 2000: 2047-2055.
    [5] TAMURA S, SUZUKI Y, TSUCHIYA T, et al. Dynamic response and failure mechanisms of a pile foundation during soil liquefaction by shaking table test with a large-scale laminar shear box[C]// Proceeding of the 12th World Conference on Earthquake Engineering. New Zealand: New Zealand Society for Earthquake Engineering, 2000: 903.
    [6] TAMARI Y, TOWHATA I. Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction[J]. Soil and Foundation, 2003, 43(2): 69-87.
    [7] 王 刚, 张建民, 魏 星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623-1627. (WANG Gang, ZHANG Jian-min, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623-16271. (in Chinese))
    [8] 陈国兴, 庄海洋, 杜修力, 等. 液化场地土-地铁车站结构大型振动台模型试验研究[J]. 地震工程与工程振动, 2007, 27(3): 163-170. (CHEN Guo-xing, ZHUANG Hai-yang, DU Xiu-li, et al. Large-scale shaking table test for subway station structure built in liquefiable saturated fine sand soil[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(3): 163-170. (in Chinese))
    [9] 陈国兴, 左 熹, 王志华, 等. 地铁车站结构近远场地震反应特性振动台试验[J]. 浙江大学学报(工学版), 2010, 44(10): 1955-1961. (CHEN Guo-xing, ZUO Xi, WANG Zhi-hua, et al. Shaking table model test of subway station structure under far field and near field ground motion[J]. Journal of Zhejiang University: Engineering Science Edition, 2010, 44(10): 1955-1961. (in Chinese))
    [10] 陈国兴, 左 熹, 王志华, 等. 可液化场地地铁车站结构地震破坏特性振动台试验研究[J]. 建筑结构学报, 2012, 33(1): 129-137. (CHEN Guo-xing, ZUO Xi, WANG Zhi-hua, et al. Shaking table test on seismic failure characteristics of subway station structure at liquefiable ground[J]. Journal of Building Structures, 2012, 33(1): 129-137. (in Chinese))
    [11] 陈国兴, 王志华, 左 熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89-97. (CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97. (in Chinese))
    [12] 韩晓健, 左 熹, 陈国兴. 基于虚拟仪器技术的振动台模型试验98通道动态信号采集系统研制[J]. 防灾减灾工程学报, 2010, 30(5): 503-508. (HAN Xiao-jian, ZUO Xi, CHEN Guo-xing. Development of 98 channels dynamic signal acquisition system for shaking table test based on virtual instrument technology[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(5): 503-508. (in Chinese))
    [13] LEE J, GREGORY L F. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1989, 25(3): 299-326.
    [14] 陈国兴, 庄海洋. 基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J]. 岩土工程学报, 2005, 27(8): 860-864. (CHEN Guo-xing, ZHUANG Hai-yang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860-864. (in Chinese))
    [15] MARTIN G B, FINN W D L, SEED H B. Fundamentals of liquefaction under cyclic loading[J]. Journal of Geotechnical Engineering, ASCE, 1975(5): 423-438.
    [16] BYRNE P M. A cyclic shear-volume coupling and pore pressure model for sand[C] // Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri, USA, 1991: 47-55.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-23
  • 发布日期:  2013-11-24

目录

    /

    返回文章
    返回