• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土的各向异性强度准则:原生各向异性

刘洋

刘洋. 砂土的各向异性强度准则:原生各向异性[J]. 岩土工程学报, 2013, 35(8): 1526-1534.
引用本文: 刘洋. 砂土的各向异性强度准则:原生各向异性[J]. 岩土工程学报, 2013, 35(8): 1526-1534.
LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534.
Citation: LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534.

砂土的各向异性强度准则:原生各向异性  English Version

基金项目: 国家自然科学基金项目(51178044)
详细信息
    作者简介:

    刘 洋(1979- ),男,江苏徐州人,博士,副教授,主要从事土细观力学和砂土液化方面的研究与教学工作。E-mail: ly-ocean@sohu.com。

  • 中图分类号: TU43

Anisotropic strength criteria of sand: inherent anisotropy

  • 摘要: 采用散粒材料的组构-应力微细观力学分析方法,在颗粒尺度上分析了砂土的原生各向异性强度特性。首先建立了砂土各向异性强度准则,若不考虑初始组构的变化,将蜕化为莫尔-库仑的原生各向异性强度准则,并可直接将现有的经典破坏准则推广到考虑砂土原生各向异性的情况,不需额外模型参数,方便于工程应用。接着基于三轴压缩与伸长试验破坏各向异性发展的不同,建立了考虑中主应力影响的简单破坏应力比-组构关系,建议了考虑组构演化的砂土原生各向异性强度准则,并考虑了砂土密实状态对其各向异性强度的影响。研究结果表明本文建立的原生各向异性强度准则,其物理机理比较明确,考虑了原生各向异性组构的演化,与真三轴试验结果吻合较好,有助于从微细观机理上分析砂土的原生各向异性强度特征。
    Abstract: Inherent anisotropy strength of sand is analyzed on the particle level based on the micromechanics of granular. An inherent anisotropic strength criterion is proposed, which will be reduced to the inherent anisotropy M-C criteria if the evolution of the initial fabric is not considered. The classical failure criteria such as M-N and L-D criteria can be extended to the inherent anisotropy strength criterion in this way and no extra model parameters are needed. In this sense, the proposed model is easy for engineering application. Based on a simple fabric-stress relationship considering the effect of intermediate principal stress, a micromechanics-based inherent anisotropy strength criterion is developed to simulate the macro-mechanical response of real sand considering the evolution of the initial fabric and the effect of density state. Finally, true triaxial tests are chosen to compare the predicted results with the proposed criteria. The numerical results indicate that the proposed strength criterion, which has rational mechanism, presents an effective approach to analyze the inherent anisotropic strength characteristics of sand.
  • [1] 刘 洋. 砂土的各向异性强度准则:应力诱发各向异性[J]. (岩土工程学报), 2013, 35(3): 460-468.(LIU Yang. An anisotropic strength criteria of sand:Ⅰstress induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468. (in Chinese))
    CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials[J]. J Boston Soc Civ Eng, 1944, 31(4): 74-87.
    ARTHUR J R F, MENZIES B K. Inherent anisotropy in sand[J]. Géotechnique, 1972, 22(1): 115-128.
    ODA M, NAKAYAMA H. Introduction of inherent anisotropy of soils in the yield function[C]// Micromechanics of Granular Materials. Amsterdam, 1988: 81-90.
    DUNCAN J M, SEED H B. Strength variation along failure surfaces in clay[J]. J Geotech Eng Div ASCE, 1966, SM6: 81-104.
    YAMADA Y, ISHIHARA K. Anisotropic deformation characteristics of sand under three dimensional stress conditions[J]. Soil and Foundations, 1979, 19(2): 79-94.
    OCHIAI H, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. J Geotech Eng, 1983, 109(10): 1313-1328.
    MIURA S, TOKI S. Anisotropy in mechanical properties and its simulation of sands sampled from natural deposits[J]. Soil and Foundations, 1984, 24(3): 69-84.
    YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on drained shear behavior of sand[J]. Soil and Foundations, 1998, 38(3): 177-186.
    MASAD E, MUHUNTHAN B. Three-dimensional characterization and simulation of anisotropic soil fabric[J]. J Geotech Geoenviron Eng, 2000, 126(3): 199-207.
    ABELEV A V, LADE P V. Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress-strain behavior and shear banding[J]. J Eng Mech, 2003, 129(2): 160-166.
    ABELEV A V, GUTTA S K, LADE P V,et al. Modeling cross anisotropy in granular materials[J]. J Eng Mech, 2007, 133(8): 919-932.
    HIGHT DW, GENS A, SYMES M J. The development of a new hollow cylinder appratus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383.
    TATSUOKA F, SAKAMOTO M, KAWAMURA T,et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures[J]. Soil and Foundations, 1986, 26(1): 65-84.
    TATSUOKA F, SONODA S, HARA K,et al. Failure and deformation of sand in torsional shear[J]. Soil and Foundations, 1986, 26(4): 79-97.
    PRADHAN T B S, TATSUOKA F, HORII N. Simple shear testing on sand in a torsional shear apparatus[J]. Soil and Foundations, 1988, 28(2): 95-112.
    LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesiveless soil[J]. ASCE, J Geotech Engng Div, 1975, 101(10): 1037-1053.
    LADE P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. Int J Solids Struct, 1977, 13(11): 1019-1035.
    MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proc Jpn Soc Civ Engrs. 1974, 232: 59-70.
    YAO Y P, LU D C, ZHOU A N,et al. Generalized non-linear strength theory and transformed stress space[J]. Sci China E: Tech Sci, 2004, 47(6): 691-709.
    MORTATA G. A new yield and failure criterion for geomaterials [J]. Géotechnique, 2008, 58(2):125-132.
    PIETRUSZCZAK S, MORZ Z. Formulation of anisotropic failure Criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112.
    SCHWEIGER H F, WILTAFSKY C, SCHARINGER F. A multilaminate framework for modelling induced and inherent anisotropy of soils[J]. Géotechnique, 2009, 59(2): 87-101.
    张连卫, 张建民, 张 嘎. 基于 SMP 的粒状材料各向异性强度准则[J]. (岩土工程学报), 2008, 30(8): 1107-1111.(ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. (in Chinese))
    李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. (岩石力学与工程学报), 2010, 29(9): 1885-1892.(LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885-1892. (in Chinese)).
    CHRISTOFFERSON J, MEHRABADI M M, NEMAT- NASSAR S. A micromechanical description on granular material behavior[J]. ASME, Journal of Applied Mechanics, 1981, 48: 339-344.
    ROTHENBURG L, SELVADURAI A P S. Micromechanical definitions of the Cauchy stress tensor for particular media[C]// Mechanics of Structured Media Selvadurai. Amsterdam, 1981: 469-486.
    CHANG C S, GAO J. Kinematic and static hypotheses for constitutive modeling of granulates considering particle rotation[J]. Acta Mech, 1996, 115(1-4): 213-229.
    HIDETOSHI Ochia, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. Journal of Geotechnical Engineering, 1984, 109(10): 1313-1328.
    PAN Y W, DONG J J. A micromechanics-based methodology for evaluating the fabric of granular[J]. Géotechnique, 1999, 49(6): 761-775.
    BIAREZ J, HICHER P Y. Elementary mechanics of soil behavior[M]. Rotterdam: The Netherlands, 1994.
    LADE P V, DUNCAN J M. Cubical triaxial tests on cohesionless soil[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(SM10): 793-812.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-06
  • 发布日期:  2013-08-19

目录

    /

    返回文章
    返回