• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑非达西渗流的比奥固结有限元分析

邓岳保, 谢康和, 李传勋

邓岳保, 谢康和, 李传勋. 考虑非达西渗流的比奥固结有限元分析[J]. 岩土工程学报, 2012, 34(11): 2058-2065.
引用本文: 邓岳保, 谢康和, 李传勋. 考虑非达西渗流的比奥固结有限元分析[J]. 岩土工程学报, 2012, 34(11): 2058-2065.
DENG Yue-bao, XIE Kang-he, LI Chuan-xun. Finite element analysis of Biot’s consolidation with non-Darcian flow[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2058-2065.
Citation: DENG Yue-bao, XIE Kang-he, LI Chuan-xun. Finite element analysis of Biot’s consolidation with non-Darcian flow[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2058-2065.

考虑非达西渗流的比奥固结有限元分析  English Version

基金项目: 国家自然科学基金项目(51179170,50708093)
详细信息
    作者简介:

    邓岳保(1983– ),男,湖南岳阳人,博士研究生,主要研究方向为固结理论数值分析和软土地基处理。E-mail: dengyuebao@yahoo.com.cn

  • 中图分类号: TU43

Finite element analysis of Biot’s consolidation with non-Darcian flow

  • 摘要: 在经典Biot固结理论基础上,建立了考虑非达西渗流影响的固结方程,并用有限元法进行了求解.首先,引入目前广泛应用的Hansbo非达西渗流定律,简要分析了该模型及其参数情况.通过对孔压梯度进行一定简化,结合流量连续条件和力的平衡条件,获得了考虑非达西渗流的Biot固结理论控制方程.在此基础上,基于加权残数法和空间八结点单元,推导了相应的有限元方程.通过在已有程序基础上编制非达西渗流模块,实现了对上述有限元方程组的求解.最后通过与解析理论对比,验证了数值方法的可靠性.结果发现相比于考虑非达西渗流的解析理论,有限元解法误差随非达西渗流控制参数的增大而增大,但总体误差在10%以内;非达西渗流会延缓固结速率,且该影响随着非达西渗流参数的增大而变得明显.
    Abstract: Based on the classic Biot’s consolidation theory, the consolidation equation considering non-Darcian flow is set up and then solved numerically with the aid of the finite element method. Firstly, the well-known Hansbo’s non-Darcian flow model is incorporated and the selection of the input parameters is analyzed correspondingly. Then, with a further simplification of the hydraulic gradient combining with the flow continuity condition and the force equilibrium condition, the governing equations for the Biot’s general consolidation theory with non-Darcian flow are formulated. Based on this, the finite element formulations for the spatial eight-node block element are deduced by means of the weighted residual method. A program considering the effect of the non-Darcian flow is developed based on an existing procedure correspondingly. With this modified program, the obtained governing equations can be solved numerically. Finally, the reliability of the numerical method is verified against the established theoretical solutions. The results show that (1) the difference of the calculated results for the two methods increases with the increase of the non-Darcian flow parameters, and the maximum difference is smaller than 10%; (2) the consolidation rate will slow down when considering the effect of non-Darcian flow, and this effect is significant when the property of the non-Darcian flow is apparent.
  • [1] BIOT M A. General theory of three-dimensional consolidation[J]. J Appl Physics, 1941(12): 155-164
    [2] SANDHU R S, WILSON E L. Finite element analysis of seepage in elastic media[J]. Journal of Engineering Mechanics Division, ASCE, 1969, 95: 641-652
    [3] 朱百里, 沈珠江. 计算土力学[M]. 上海: 上海科学技术出版社, 1990.
    ZHU Bai-li, SHEN Zhu-jiang. Computational soil mechanics[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1990.
    [4] 谢康和, 周 健. 岩土工程有限元分析理论与应用[M]. 北京: 科学出版社, 2002.
    XIE Kang-he, ZHOU Jian. Theory and application of the finite element method in geotechnical engineering[M]. Beijing: Science Press, 2002.
    [5] HANSBO S. Consolidation of clay, with special reference to vertical sand drains[J]. Swedish Geotechnical Institute, 1960, 18: 45-50
    [6] HANSBO S. Deviation from Darcy’s law observed in one-dimensional consolidation[J]. Géotechnique, 2003, 53(6): 601-605
    [7] MILLER R J, LOW P F. Threshold gradient for water flow in clay system[J]. Proceedings of Soil Science Society of American, 1963, 27(6): 605-609
    [8] DUBIN B, MOULIN G. Influence of a critical gradient on the consolidation of clays[C]// Consolidation of Soils: Testing and Evaluation (STP 892), ASTM, 1985: 354-377.
    [9] SWARTZENDRUBER D. Modification of Darcy’s law for the flow of water in soils[J]. Soil Science, 1962, 93: 22-29
    [10] PASCAL F, PASCAL H, MURRAY D W. Consolidation with threshold gradients[J]. International Journal for Numerical and Analytical Method in Geomechanics, 1981, 5: 247-261
    [11] 刘慈群. 有起始比降固结问题的近似解[J]. 岩土工程学报, 1982, 4(3): 107-109
    LIU Ci-qun. The approximate solution of consolidation problem with threshold gradients[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(3): 107-109. (in Chinese))
    [12] 刘忠玉, 孙丽云, 乐金朝, 等. 基于非Darcy渗流的饱和黏土一维固结理论[J]. 岩石力学与工程学报, 2009, 28(5): 973-979
    LIU Zhong-yu, SUN Li-yun, YUE Jin-chao,,et al. One-dimensional consolidation theory of saturated clay based on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 973-979. (in Chinese))
    [13] XIE Kang-he, WANG Kun, WANG Yu-lin,,et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J]. Computers and Geotechnics, 2010, 37(4): 487-493
    [14] 李传勋, 谢康和, 王 坤, 等. 基于指数形式渗流定律的软土一维固结分析[J]. 土木工程学报, 2011, 44(8): 111-118
    LI Chuan-xun, XIE Kang-he, WANG Kun,,et al. One-dimensional consolidation analysis considering exponential flow law for soft clays[J]. China Civil Engineering Journal, 2011, 44(8): 111-118. (in Chinese))
    [15] 李传勋, 谢康和, 卢萌盟, 等. 基于非牛顿指数描述的非达西渗流一维固结分析[J]. 岩土力学, 2011, 32(1): 281-287
    LI Chuan-xun, XIE Kang-he, LU Meng-meng,,et al. Analysis of one-dimensional consolidation with non-Darcy flow described by non-Newtonian index[J]. Rock and Soil Mechanics, 2011, 32(1): 281-287. (in Chinese))
    [16] 李传勋, 谢康和, 卢萌盟, 等. 变荷载下基于指数形式渗流的一维固结分析[J]. 岩土力学, 2011, 32(2): 553-559
    LI Chuan-xun, XIE Kang-he, LU Meng-meng,,et al. One-dimensional consolidation analysis considering exponential flow law and time-depending loading[J]. Rock and Soil Mechanics, 2011, 32(2): 553-559. (in Chinese))
    [17] HANSBO S. Aspects of vertical drain design: Darcian or non-Darcian flow[J]. Géotechnique, 1997, 47: 983-992
    [18] HANSBO S. Consolidation equation valid for both Darcian and non-Darcian flow[J]. Géotechnique, 2001, 51(1): 51-54
    [19] HANSBO S. Deviation from Darcy’s law observed in one-dimensional consolidation[J]. Géotechnique, 2003, 53(6): 601-605
    [20] TEH Cee Ing, NIE Xiao-yan. Coupled consolidation theory with non-Darcian flow[J]. Computers and Geotechnics, 2002 29: 169-209
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-18
  • 发布日期:  2012-12-19

目录

    /

    返回文章
    返回