• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于复数表达的随机渗流研究

宋会彬, 詹美礼, 盛金昌, 罗玉龙, 黄青富

宋会彬, 詹美礼, 盛金昌, 罗玉龙, 黄青富. 基于复数表达的随机渗流研究[J]. 岩土工程学报, 2012, 34(11): 2043-2049.
引用本文: 宋会彬, 詹美礼, 盛金昌, 罗玉龙, 黄青富. 基于复数表达的随机渗流研究[J]. 岩土工程学报, 2012, 34(11): 2043-2049.
SONG Hui-bin, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, HUANG Qing-fu. Stochastic seepage based on complex expression[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2043-2049.
Citation: SONG Hui-bin, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, HUANG Qing-fu. Stochastic seepage based on complex expression[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2043-2049.

基于复数表达的随机渗流研究  English Version

基金项目: 国家自然科学基金项目(51079039,51009053)
详细信息
    作者简介:

    宋会彬(1985– ),女,辽宁铁岭人,博士研究生,主要从事工程渗流及地下水研究。E-mail: shbsgf@163.com

  • 中图分类号: TU46

Stochastic seepage based on complex expression

  • 摘要: 以复数形式表示渗透系数,将其变异值设置为复数的虚部.利用有限单元法,通过求解复系数线性方程组计算随机渗流问题,并编制相应程序,计算结点水头和水头变异值.在应用蒙特卡罗法进行渗流计算时,仅考虑帷幕渗透系数的变异,并假设其服从均匀分布.选取水头均值与水头标准差为蒙特卡罗法渗流计算的统计特征值.从数值方面分析了基于复数表达的随机渗流计算所得的水头值及水头变异值与蒙特卡罗法计算的水头均值及标准差之间的关系,验证了所用方法在模拟随机渗流场方面的正确性和可行性.为大型复杂问题的大变异性求解提供了方便快捷的计算方法.
    Abstract: The permeability coefficient here is expressed in form of complex variable, the imaginary part of which is the variation value. The node head value and its variation value are calculated by self-compiling program according to the solution of linear equations with complex coefficient based on the finite element method. The permeability coefficient of curtain is considered as random variable and to be in uniform distribution by using Monte Carlo stochastic finite element method to calculate the stochastic seepage filed. The head mean value and the head standard deviation are used to represent the statistical values of the calculated results obtained by the Monte Carlo stochastic finite element method. The calculated values of head value and the head variation are compared with the head mean value and the head standard deviation by numerical simulation. The results demonstrate that the seepage calculation with permeability coefficient expressed in complex variable is correct and feasible. This study provides a convenient method for solving large complex problem under large variability conditions.
  • [1] YEH T C, GELHAR L W, GUTJAHR A L. Stochastic analysis of unsaturated flow in heterogeneous soils: 1. Statistically isotropic media[J]. Water Resources Research, 1985, 21(4): 447-456
    [2] YEH T C, GELHAR L W, GUTJAHR A L. Stochastic analysis of unsaturated flow in heterogeneous soils: 2. Statistically anisotropic media with variable 11-1484/img_46.png10.010.0[J]. Water Resources Research, 1985, 21(4): 457-464
    [3] TSAO M, WANG M K, CHEN M C,,et al. A case study of the pore water pressure fluctuation on the slip surface using horizontal borehole works on drainage well[J]. Engineering Geology, 2005, 78(3/4): 105-118
    [4] ZHANG D X, WAALLSTORM T C, WINTER C L. Stochastic analysis of steady state unsaturated flow in heterogeneous media: comparison of the Brooks-Corey and Gardner-Russo models[J]. Water Resources Research, 1998, 34(6): 1437-1449
    [5] ZHANG D X. Nonstationary stochastic analysis of transient unsaturated flow in randomly heterogeneous media[J]. Water Resources Research, 1999, 35(4): 1127-1141
    [6] ZHANG D X, LU Z M. An efficient higher-order perturbation approach for flow in randomly heterogeneous porous media via Karhunen-Loeve decomposition[J]. Journal of Computational Physics, 2004, 194(2): 773-794
    [7] ROY R V, GRILLI S T. Probabilistic analysis of flow in random porous media by stochastic boundary elements[J]. Engineering Analysis with Boundary Elements, 1997, 19(3): 239-255
    [8] 盛金昌, 速宝玉, 魏保义. 基于Taylor 级数展开随机有限元法的裂隙岩体随机渗流分析[J]. 岩土工程学报, 2001, 23(4): 485-488
    SHENG Jin-chang, SU Bao-yu, WEI Bao-yi. Stochastic seepage analysis of joint rock masses by usage of Taylor series stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 485-488. (in Chinese))
    [9] YANG J Z, ZHANG D X, LU Z M. Stochastic analysis of saturated-unsaturated flow in heterogeneous media by combining Karhunen-Loeve expansion and perturbation method[J]. Journal of Hydrology, 2004, 294(1-3): 18-38
    [10] 何 翔, 冯夏庭, 张东晓. 岩体渗流-应力耦合有限元计算的精细积分方法[J]. 岩石力学与工程学报, 2006, 25(10): 2003-2007
    HE Xiang, FENG Xia-ting, ZHANG Dong-xiao. Precision integration algorithm for simulation of coupled process of seepage field and stress field in rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2003-2007. (in Chinese))
    [11] 李锦辉, 王 媛, 胡 强. 三维稳定渗流的随机变分原理及有限元法[J]. 工程力学, 2006, 23(6): 21-24
    LI Jin-hui, WANG Yuan, HU Qiang. The variational principle and finite element method in 3D steady seepage[J]. Engineering Mechanics, 2006, 23(6): 21-24. (in Chinese))
    [12] 王亚军, 张我华, 陈合龙. 长江堤防三维随机渗流场研究[J]. 岩石力学与工程学报, 2007, 26(9): 1824-1831
    WANG Ya-jun, ZHANG Wo-hua, CHEN He-long. Three-dimensional random seepage field analysis for main embankment of Yangtze River[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1824-1831. (in Chinese))
    [13] 王 媛, 王 飞, 倪小东. 基于非稳定渗流随机有限元的隧洞涌水量预测[J]. 岩石力学与工程学报, 2009, 28(10): 1986-1994
    WANG Yuan, WANG Fei, NI Xiao-dong. Prediction of water inflow in tunnel based on stochastic finite element of unsteady seepage[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1986-1994. (in Chinese))
    [14] 徐钟济. 蒙特卡罗方法[M]. 上海: 上海科学技术出版, 1985.
    XU Zhong-ji. Monte Carlo method[M]. Shanghai: Shanghai Science and Technology Publishing House, 1985.
    [15] MOORE M S. Stochastic field from stochastic mechanics[J]. Journal of Mathematics and Physics, 1980, 21(8): 2104-2106
    [16] 毛昶熙. 渗流计算分析与控制[M]. 北京: 水利电力出版社, 1988.
    MAO Chang-xi. Seepage calculation and control[M]. Beijing: Water Resources and Electric Power Press, 1988.
计量
  • 文章访问数:  872
  • HTML全文浏览量:  2
  • PDF下载量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-19
  • 发布日期:  2012-12-19

目录

    /

    返回文章
    返回