• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

循环应力历史对饱和软黏土小应变剪切模量的影响

谷川, 蔡袁强, 王军, 杨芳, 胡秀青

谷川, 蔡袁强, 王军, 杨芳, 胡秀青. 循环应力历史对饱和软黏土小应变剪切模量的影响[J]. 岩土工程学报, 2012, 34(9): 1654-1660.
引用本文: 谷川, 蔡袁强, 王军, 杨芳, 胡秀青. 循环应力历史对饱和软黏土小应变剪切模量的影响[J]. 岩土工程学报, 2012, 34(9): 1654-1660.
GU Chuan, CAI Yuan-qiang, WANG Jun, YANG Fang, HU Xiu-qing. Effects of loading history on small-strain shear modulus of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1654-1660.
Citation: GU Chuan, CAI Yuan-qiang, WANG Jun, YANG Fang, HU Xiu-qing. Effects of loading history on small-strain shear modulus of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1654-1660.

循环应力历史对饱和软黏土小应变剪切模量的影响  English Version

详细信息
    作者简介:

    谷 川(1986– ),男,山东济宁人,博士研究生,主要从事土动力学方面的研究工作。

  • 中图分类号: TU47

Effects of loading history on small-strain shear modulus of saturated clays

  • 摘要: 饱和软黏土的小应变剪切模量Gmax是其基本力学参数。在进行饱和软黏土的有效应力动力分析时,往往认为小应变剪切模量Gmax只随着有效应力的降低而衰减,而不受动荷载应力历史的影响,因此基本采用静力状态下得到的小应变剪切模量代替相同有效应力时动力状态下的小应变剪切模量。但是,对于饱和软黏土,目前并没有足够多的试验数据证明这一假设。基于这一考虑,通过GDS动三轴及弯曲元测试系统,研究了循环应力历史对饱和软黏土小应变剪切模量的影响,试验结果表明循环应力历史对Gmax的影响较大,采用静力状态下得到的Gmax代替动力状态下的Gmax并不可取。同时,发现可以使用小应变剪切模量的突变来表征饱和软黏土的结构破坏。
    Abstract: The small-strain shear modulus is the main physical index of saturated clays. In the methods for the effective stress analysis, the mall-strain shear modulus obtained from static tests is often used in the dynamic analysis without regard to the influence of loading history. However, for saturated clays, this assumption has not been proved by enough test data. Based on this consideration, a few cyclic triaxial and bender element tests were conducted to study the influence of loading history on the small-strain shear modulus of saturated clays. The test results indicate that the influence is great and the above assumption is not correct. Meanwhile, it is also found that the small-strain shear modulus can be used to determine the failure criterion of saturated clays under cyclic loading.
  • [1] HARDIN B O, RICHART Jr F E. Elastic wave velocities in granular soils[J]. Journal of Soil Mechanics and Foundations Division, ASCE 1963, 89(1): 33–65.
    [2] HARDIN B O, BLACK W L. Vibration modulus of normally consolidated clay[J]. Journal of Soil Mechanics and Foundations Division, ASCE 1968, 94(2): 453–69.
    [3] TOKIMATSU K, YAMAZAKI T, YOSHIMI Y. Soil liquefaction evaluation by elastic shear moduli[J]. Soils and Foundations, 1986, 26(1): 25–35.
    [4] ZHOU Yan-guo, CHEN Yun-min. Influence of seismic cyclic 1oading history on small strain shear modulus of saturated sands[J]. Soil Dynamics and Earthquake Engineering, 2005, 25: 341–353.
    [5] FINN W D L, BYRNE P M, MARTIN G R. Seismic response and liquefaction of sands[J]. Journal of Geotechnical Engineering Division, ASCE 1976, 102(8): 841–56.
    [6] FINN W D L, LEE K W, MARTIN G R. An effective stress model for liquefaction[J]. Journal of Geotechnical Engineering Division, ASCE 1977, 103(6): 517–33.
    [7] DRNEVICH V P, HALL J R, RICHART F E J R. Effects of amplitude of vibration of the shear modulus of sand[C]// Proceeding of International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, NM, 1976.
    [8] WICHTMANN T, TRIANTAFYLLIDIS Th. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, Part l: cyclic and dynamic torsional prestraining[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(2), 127–147.
    [9] 周燕国. 土结构性的剪切波速表征及对动力特性的影响[D]. 杭州: 浙江大学, 2007. (ZHOU Yan-guo. Shear wave velocity-based characterization of soil structure and its effects on dynamic behavior[D]. Hangzhou: Zhejiang University, 2007. (in Chinese))
    [10] 张 钧. 循环应力历史对粉土小应变剪切模量的影响[D]. 杭州: 浙江大学, 2010. (ZHANG Jun. Cyclic stress history effects on small-strain shear modulus of silt[D]. Hangzhou: Zhejiang University, 2010. (in Chinese))
    [11] 姬美秀. 压电陶瓷弯曲元剪切波速测试及饱和海洋软黏土动力特性研究[D]. 杭州: 浙江大学, 2005. (JI Mei-xiu. Study on the shear wave velocity measurement from bender element and dynamic properties of saturated soft marine clay[D]. Hangzhou: Zhejiang University, 2005. (in Chinese))
    [12] SHIRLEY D, HAMPTON L D. Shear-wave measurements in laboratory sediments[J]. Journal of the Acoustical Society of America, 1978, 63(2): 607–613.
    [13] DYVIK R, MADSHUS C. Laboratory measurement of Gmax using bender elements[C]// Proceedings of ASCE Annual Convention: Advances in the Art of Testing Soils Under Cyclic Conditions. Detroit: ASCE, 1985: 186–196.
    [14] 姬美秀, 陈云敏, 黄 博. 弯曲元试验高精度测试土样剪切波速方法[J]. 岩土工程学报, 2003, 26(6): 732–736. (JI Mei-xiu, CHEN Yun-min, HUANG Bo. Method for precisely determining shear wave velocity of soil from bender element tests[J]. Chinese Jounal of Geotechnical Engineering, 2003, 26(6): 732–736. (in Chinese))
    [15] 周燕国, 陈云敏, 柯 瀚. 砂土液化势剪切波速简化判别法的改进[J]. 岩石力学与工程学报, 2005, 24(13): 2369–2375. (ZHOU Yan-guo, CHEN Yun-min, KE Han. Improvement of simplified procedure for liquefaction potential evaluation of sands by shear wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2369–2375. (in Chinese))
    [16] 陈云敏, 周燕国, 黄 博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 28(7): 874–880. (CHEN Yun-min, ZHOU Yan-guo, HUANG Bo. International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese Jounal of Geotechnical Engineering, 2006, 28(7): 874–880. (in Chinese))
    [17] KGAAWA T. Moduli and damping factors of soft marine clays[J]. Journal of Geotechnical Engineering, ASCE 1992, 118(9): 1360–1375.
    [18] HARDIN B O, DMEVIEH V P. Shear modulus and damping in soils: Measurement and parameter effects[J]. Journal of Soil Mechanics and Foundations Division, ASCE 1972, 98(6): 603–624.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-14
  • 发布日期:  2012-10-09

目录

    /

    返回文章
    返回