• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

加载路径对粗粒土非共轴性影响的试验研究

蔡燕燕, 俞缙, 余海岁, 郭力群

蔡燕燕, 俞缙, 余海岁, 郭力群. 加载路径对粗粒土非共轴性影响的试验研究[J]. 岩土工程学报, 2012, 34(6): 1117-1122.
引用本文: 蔡燕燕, 俞缙, 余海岁, 郭力群. 加载路径对粗粒土非共轴性影响的试验研究[J]. 岩土工程学报, 2012, 34(6): 1117-1122.
CAI Yan-yan, YU Jin, YU Hai-sui, GUO Li-qun. Experimental study on effect of loading path on non-coaxiality of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1117-1122.
Citation: CAI Yan-yan, YU Jin, YU Hai-sui, GUO Li-qun. Experimental study on effect of loading path on non-coaxiality of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1117-1122.

加载路径对粗粒土非共轴性影响的试验研究  English Version

基金项目: 国家自然科学基金项目(51109084);福建省自然科学基金项目(2011J01317);中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金项目(SKLGDUEK1012, SKLGDUEK1111);重庆交通大学(桥梁)结构工程重点实验室开放基金项目(CQSLBF-Y11-2);华侨大学侨办基金项目(09QZR03)
详细信息
    作者简介:

    蔡燕燕 (1982 – ),女,福建晋江人,博士,讲师,主要从事土力学与地基基础等方面的研究工作。

  • 中图分类号: TU411

Experimental study on effect of loading path on non-coaxiality of granular materials

  • 摘要: 采用空心圆柱扭转仪,对 Portaway 砂进行排水试验,研究粗颗粒砂土主应力和主应变增量的非共轴性,以及应力路径(历史)对砂土非共轴性的影响规律。试验分两个系列,系列 1 中试件在排水固结后直接沿着固定的主应力方向进行加载,系列 2 中试件在排水固结后先进行轴向压缩,再沿着与系列 1 同样的加载路径剪切。试验进一步验证了颗粒材料的非共轴特性。试验结果显示:非共轴度与材料的加载方向密切相关,加载历史对于非共轴度有一定的影响;随着试件接近破坏状态,主应力和主应变增量趋于共轴。
    Abstract: The non-coaxiality between the major principal stress and the principal strain increment directions is found to be an important feature of granular materials. The conventional constitutive models are based on the theory of coaxiality without considering the effect of non-coaxiality. A hollow cylinder apparatus is used to investigate the non-coaxiality between the axes of the major principal stress and principal strain increment and the effects of loading history on the degree of non-coaxiality. Two series of drained tests are carried out on Portaway sand. In the first series, the specimens are sheared along the fixed principal stress directions. In the second one, the specimens are compressed along the vertical direction before shearing along the same paths of the first series. The results show further evidence of the non-coaxiality. The degree of non-coaxiality has dependence on the loading directions as well as the effect of loading history. It is also found that the degree of non-coaxiality will reduce when the specimen approaches failure.
  • [1] ROSCOE K H, BASSETT R H, COLE E R L. Principal axes observed during simple shear of a sand[C]// 4th European Conference on Soil Mechanics and Foundation Engineering. Oslo, 1967: 231 – 237.
    [2] WONG R K S, ARTHUR J R F. Sand Sheared by Stresses with Cyclic Variations in Directions[J]. Géotechnique, 1986, 36 (2): 215 – 226
    [3] YU H S. Plasticity and Geotechnics[M]. Berlin: Springer, 2006.
    [4] YU H S, YUAN X. The importance of accounting for non-coaxial behaviour in modelling soil--structure interaction[C]// Proceedings of the 11th IACMAG, 2005: 709 – 718.
    [5] YANG Y, YU H S. Application of a non-coaxial soil model in shallow foundations[J]. Geomechanics and Geoengineering, 2006, 1 (2): 139 – 150
    [6] YU H S. Non-coaxial theories of plasticity for granular materials, Keynote Lecture[C]// Proc of 12th International Conference of IACMAG, 2008: 361 – 378.
    [7] SYMES M J, GENS A, HIGHT D W. Undrained anisotropy and principal stress rotation in saturated sand[J]. Géotechnique, 1984, 34 (1): 11 – 27.
    [8] MIURA K, MIURA S, TOKI S. Deformation behaviour of anisotropic dense sand under principal stress axis rotation[J]. Soils and Foundations, 1986, 26 (1): 36 – 52.
    [9] ISHIHARA K, TWOHATA . I. Sand response to cyclic rotation of principal stress directions as induced by wave loads[J]. Soils and Foundations, 1983, 23 (4): 11 – 26.
    [10] PRADEL D, ISHIHARA K, GUTIZRREZ M. Yielding and flow of sand under principal stress axes rotation[J]. Soils and Foundations, 1990, 30 (1): 87 – 99.
    [11] GUTIERREZ M, ISHIHARA K, TWOHATA I. Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations, 1991, 31 : 121 – 132.
    [12] GUTIERREZ M, ISHIHARA K. Non-coaxiality and energy dissipation in granular material[J]. Soils and Foundation, 2000, 40 : 49 – 9.
    [13] 孙德安 , 姚仰平 . 粒状材料的一个实用弹塑性模型 [J]. 岩石力学与工程学报 , 2002, 21 (8): 1147 – 1152. (SUN De-an, YAO Yang-ping. Practical elastoplastic model for granular materails[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (8): 1147 – 1152. (in Chinese))
    [14] 黄茂松 , 孙海忠 , 钱建固 . 粗粒土的非共轴性及其离散元数值模拟 [J]. 水利学报 , 2010, 41 (2): 173 – 181. (HUANG Mao-song, SUN Hai-zhong, QIAN Jian-gu. Non-coaxial behavior of coarse granular aggregates simulated by DEM[J]. Journal of Hydraulic Engineering, 2010, 41 (2): 173 – 181. (in Chinese))
    [15] ALONSO-MARROQUIN F, LUDING S, HERRMANN H J. Role of anisotropy in the elastoplastic response of a polygonal packing[J]. Physical Review , 2005(E71): 051304.
    [16] LI X, YU H S. Influence of loading direction on the behaviour of anisotropic granular materials[J]. International Journal of Engineering Science, 2009, 47 : 1284 – 1296.
计量
  • 文章访问数:  1146
  • HTML全文浏览量:  0
  • PDF下载量:  975
  • 被引次数: 0
出版历程
  • 发布日期:  2012-06-19

目录

    /

    返回文章
    返回