• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

梯度塑性理论的计算方法与应用

杜修力, 侯世伟, 路德春, 梁国平, 安超

杜修力, 侯世伟, 路德春, 梁国平, 安超. 梯度塑性理论的计算方法与应用[J]. 岩土工程学报, 2012, 34(6): 1094-1101.
引用本文: 杜修力, 侯世伟, 路德春, 梁国平, 安超. 梯度塑性理论的计算方法与应用[J]. 岩土工程学报, 2012, 34(6): 1094-1101.
DU Xiu-li, HOU Shi-wei, LU De-chun, LIANG Guo-ping, AN Chao. Application of gradient plastic theory based on FEPG platform[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1094-1101.
Citation: DU Xiu-li, HOU Shi-wei, LU De-chun, LIANG Guo-ping, AN Chao. Application of gradient plastic theory based on FEPG platform[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1094-1101.

梯度塑性理论的计算方法与应用  English Version

基金项目: 国家重点基础研究发展计划(973 计划)项目(2011CB013600);教育部博士点基金项目(20101103110011);国家高技术研究发展计划(863 计划)(2009AA044501)
详细信息
    作者简介:

    杜修力 (1962 – ),男,四川广安人,博士,教授,博士生导师,主要从事水工抗震、抗爆等方面的研究。

  • 中图分类号: TU411

Application of gradient plastic theory based on FEPG platform

  • 摘要: 基于有限元自动生成系统 (FEPG) ,开发使用梯度塑性理论的有限元程序,用于解决应变软化后的网格依赖性问题。提出带阻尼因子的 算法,联立求解位移方程和屈服面方程,既可同时解得位移和塑性乘子,又避免了广泛使用的应力返回算法中的应力拉回运算。在 D-P 准则中引入软化模量和材料内部特征长度,使本构模型能够考虑软化和梯度效应。在软化问题求解上使用阻尼牛顿法,算例结果表明,带阻尼因子的算法能够计算应变软化问题,以有限元弱形式表达的梯度塑性理论,使用一阶单元就能够得到合理的结果,在一定网格范围能够得到稳定的应力应变曲线。
    Abstract: Based on the FEPG platform, the finite element program using gradient plastic theory is developed to solve mesh dependence after strain softening. A algorithm with damp factor is proposed, which can solve the equation of displacement and yield surface simultaneously. The algorithm can not only get displacement and plastic multiplier together, but also avoid the stress haul back calculation in stress return algorithm widely used in finite element solution procedures. The softening modulus and the internal character length are introduced into D-P yield function, and the constitutive model can consider strain softening and gradient effect. The damp Newton algorithm is used to calculate softening problems. The results of a case study show that the algorithm with damp factor can be used to solve softening problems, the gradient plastic theory described by finite element weak form has no requirement of continuity, and appropriate outcome can be obtained by the first-order element, thus the mesh dependence of simulation is basically solved.
  • [1] ZIENKIEWICZ O C, HUANG M S, PASTOR M. Localization problems in plasticity using finite elements with adaptive remeshing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19 (2): 127 – 148.
    [2] BELYTSCHKO T, BLACK T. Elastic crack growth in finite element with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45 (5): 601 – 620.
    [3] BELYTSCHKO T, LU Y Y, GU L, Element-free Galerkin method[J]. International Journal for Numerical Methods in Engineering, 1994, 37 (2): 229 – 256.
    [4] DE BORST R, SLUYS L J. Localization in a Cosserat continuum under static and dynamic loading conditions[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 90 (1): 805 – 827.
    [5] FLECK N A, HUTCHINSON J W. Strain gradient plasticity[J]. Advances in Applied Mechanics,1997, 33 : 295 – 361.
    [6] MUHLHAUS H B, AIFANTIS E C. A variational principle for gradient plasticity[J]. International Journal of Solids and Structures,1991, 28 (7): 845 – 857.
    [7] 宋二祥 . 软化材料有限元分析的一种非局部方法 [J]. 工程力学 , 1995, 12 (4): 93 – 101. (SONG Er-xiang. A nonlocal approach for finite element analysis of softening material[J]. 1995, 12 (4): 93 – 101. (in Chinese))
    [8] DE BORST R, PAMIN J. Some novel developments in finite element procedures for gradient-dependent plasticity[J]. International Journal for Numerical Methods in Engineering, 1996, 39 (14): 2477 – 2505.
    [9] 李锡夔 , CESCOTTO S. 梯度塑性的有限元分析及应变局部化模拟 [J]. 力学学报 , 1996, 28 (5): 575 – 584. (LI Xin-kui, CESCOTTO S. Finite element analysis for gradient plasticity and modeling of strain localization[J]. Acta Mechanica Sinica, 1996, 28 (5): 575 – 584. (in Chinese))
    [10] MANZARI M T, REGUEIRO R A. Gradient plasticity modeling of geomaterials in a meshfree environment. Part I: Theory and variational formulation[J]. Mechanics Research Communications, 2005, 32 (5): 536 – 546.
    [11] HASHIGUCHI K, TSUTSUMI S. Gradient plasticity with the tangential-subloading surface model and the prediction of shear-band thickness of granular materials[J]. International Journal of Plasticity, 2007, 23 (5): 767 – 797.
    [12] 朱以文 , 徐 晗 , 蔡元奇 , 等 . 边坡稳定的剪切带计算 [J]. 计算力学学报 , 2007, 24 (4): 441 – 446. (ZHU Yi-wen, XU Han, CAI Yuan-qi, et al. Calculation of shear band for slope stability[J]. Chinese Journal of Computational Mechanics, 2007, 24 (4): 441 – 446. (in Chinese))
    [13] MROGINSKI J L, ETSE G, VRECH S M. A thermodynamical gradient theory for deformation and strain localization of porous media[J]. International Journal of Plasticity, 2011, 27 (4): 620 – 634.
    [14] 梁国平 . 有限元语言 [M]. 北京 : 科学出版社 , 2009. (LIANG Guo-ping. Finite element language[M]. Beijing: Science Press, 2009. (in Chinese))
    [15] 殷有泉 . 非线性有限元基础 [M]. 北京 : 北京大学出版社 , 2007. (YIN You-quan. Non-linear finite element[M]. Beijing: Peking University Press, 2007. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 发布日期:  2012-06-19

目录

    /

    返回文章
    返回