Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads
-
摘要: 基于平面应变假定,建立了考虑被动桩散射效应的桩–土–桩竖向耦合振动响应分析计算模型。依托该计算模型,首先求解土体控制方程,得到桩周土纵向位移表达式、桩周土纵向复阻抗以及土体位移衰减函数,然后基于严格的桩–土耦合作用,求解外荷载作用下的主动桩位移和由主动桩振动产生的被动桩位移,并求出由被动桩振动产生的主动桩位移,由此得到考虑被动桩散射效应的桩–桩动力相互作用因子。基于求得的修正桩–桩动力相互作用因子,建立考虑被动桩散射效应的群桩竖向动力刚度矩阵,结合桩帽性质及叠加原理,推导得到竖向动荷载作用下的群桩竖向动力响应解析解。基于所得解进行算例分析表明:退化解与已有文献解吻合很好,验证了解的合理性;被动桩的散射效应对小间距群桩的振动响应有不可忽视的影响;桩间距和桩长径比对桩–桩动力相互作用因子、群桩竖向动阻抗有显著影响。Abstract: An analytical model for pile-soil-vertical coupled vibration of the pile considering the scattering effects of the passive pile is proposed based on the classical plane strain assumption. The governing equation for the soil is solved to obtain the expressions for the vertical displacement and resistance of the soil and the attenuation function of the soil displacement. Based on rigorous pile-soil interaction, the pile-interaction factor of the pile considering the scattering effects of the passive pile is obtained by solving the displacement of the active pile under vertical excitation and the displacement of the passive pile caused by the vibration of the active pile, as well as the displacement of the active pile caused by the scattering waves of the passive pile. Based on the modified pile-pile interaction factor, a stiffness-matrix is then established to derive the vertical dynamic responses of the pile groups by considering the scattering effects of the passive pile. Then the analytical solution for the vertical dynamic impedance of the pile groups is derived by incorporating the property of pile cap and the superposition principle. Finally, some arithmetical cases are presented to conduct the numerical analysis. It is found that the degenerated solution for the present solution agrees well with the existing one. The scattering effects cannot be ignored for the pile groups with small pile spacing. The pile spacing and slenderness ratio have considerable effects on the pile-interaction factor of the pile and the vertical dynamic impedance of the pile groups.
-
Keywords:
- pile group /
- scattering effect /
- interaction factor /
- dynamic response /
- analytical solution
-
0. 引言
中国城市轨道交通近年来迅猛发展,已经成为市政基础设施的主要组成之一,随之而来的深基坑工程由于建设条件越来越复杂,常常出现自身安全性与周边环境稳定性的破坏。兰州市东西狭长而南北窄的带状分布严重阻碍了市区交通的运输[1],为此规划的地铁线网在施工中碰到了西北地区特殊的富水红砂岩层,其工程性质差别很大,压实胶结作用差,揭露后极易发生风化,未扰动前力学性质较好,遇水扰动后强度快速衰退,崩解成流塑形的散沙,从而引发诸多地质工程问题[2-5],而地铁深基坑支护结构的设计目前仍处在施工探索和实践的阶段。兰州地铁各车站基坑的红砂岩地层岩性差异非常大,若不对红砂岩分类并针对性地进行支护结构设计和地下水处理,将导致基坑被水浸泡、坑壁涌水涌砂等一系列工程问题。定西路站基坑内的红砂岩地层遇水具有典型的崩解特性,与之相应的基坑支护和地下水治理方案的研究刻不容缓。
国内外学者对深基坑支护结构的力学与变形特性已经做了大量的工作[6-10],但都没有针对兰州地区特殊红砂岩地层的深入研究。本文依托定西路站车站深基坑工程,对开挖过程中的监测数据和Midas GTS的数值模拟结果对比分析,验证支护方案设计的合理性,研究结果可为类似红砂岩分布地区基坑支护结构设计提供技术支持。
1. 工程概况
1.1 车站概况
定西路车站轴线近南北向分布,车站总长185 m,标准段宽约23.3 m,底板埋深24.33~24.73 m,主体基坑施工方式为明挖法。车站两侧密集的建筑物加大了围护结构的受力,对基坑支护产生了不利影响。
1.2 地质及水文条件
场地45.0 m勘探深度范围内各地层的岩性及埋藏条件如表 1。车站地下水为潜水,卵石层为主要含水层,埋深为5.0~11.0 m,其下第三系粉砂岩成岩作用差,岩层内存在与卵石层相通的裂隙水。
表 1 岩土参数Table 1. Geotechnical parameters地层 层厚/m 重度/(kN·m-3) 黏聚力/kPa 内摩擦角/(°) 渗透系数/(m·d-1) 黄土状土 0.7~10.2 18.3 17 20 5.0~8.0 卵石 5.0~11.0 21.0 0 40 25.8~35.3 强风化砂岩 5.7~10.8 20.7 30 33 2.1~2.9 中风化砂岩 未穿透 21.3 40 38 0.5~1.0 1.3 支护结构方案
车站场地砂岩层渗透性较小、流通性差,降水周期短会导致层间滞水,坑壁渗水将引发强风化粉砂岩崩解,给基坑侧壁安全带来极大的风险,场地特有的水文地质条件和岩土工程问题要求车站基坑的支护结构兼具支承及止水能力。
车站结构形式为地下二层单柱双跨箱型框架结构,综合考虑经济性和安全性,该站基坑采用咬合桩加内支撑支护。桩墙由Φ1000@1400 mm的C35钢筋混凝土钻孔灌注桩与Φ800@1400 mm的C15素混凝土旋喷桩咬合而成,咬合深度为200 mm,桩长24.118 m。标准段沿竖向布置三道内支撑,钢筋混凝土撑水平间距约6 m,钢管撑水平间距为3 m,支护结构如图 1所示。
2. 现场测试与分析
2.1 监测方案
根据《城市轨道交通工程监测技术规范》(GB50911—2013)制定监测方案,各监测项目及控制值如表 2,监测点平面布置如图 2。
表 2 基坑监测项目及控制值Table 2. Foundation pit monitoring items and control values监测项目 累计绝对值/mm 累计开挖深度/% 变化速率/(m·d-1) 周边地表沉降 30 0.20 3 建筑物沉降 30 0.20 3 支撑轴力 轴力设计值 2.2 基坑周边地表沉降分析
地表沉降监测点DB10-1、DB10-2和DB10-3随时间的变化关系曲线如图 3。由图 3可得,各监测点的地表累计沉降量随着基坑开挖深度增大上下波动,但总体上都在增大。开挖初期,最大沉降的位置离基坑边缘较近,随着基坑开挖深度增加,距离基坑边缘较远的DB10-3沉降值更大,说明此时坑外土体向内倾斜对地表沉降产生的影响比内支撑的抑制作用大。
随着施工的进行,基坑周边地表起伏变化。基坑开挖是卸荷过程,开挖初期内支撑未支护时,地表沉降。6月17日左右,第一道钢支撑施工完成,支护桩后的土体受到朝基坑外的挤压,地表出现较小的隆起现象。随着开挖深度增大,地表再次沉降,7月15日,第二道钢支撑施工完成,地表再次隆起。DB10-3的最大沉降值为12.28 mm,远小于控制值30 mm,表明基坑支护安全有效,基坑开挖对周边地表的影响在可控范围内。
2.3 基坑周边建筑物沉降分析
某栋楼四角监测点CJ-12、CJ-13、CJ-14和CJ-15的累计沉降值随时间的变化关系曲线如图 4。可知随着基坑开挖建筑物整体上在沉降,5月13日第一道支撑施工完成,建筑物向上隆起,6月17日第二道支撑施工后,建筑物整体发生微小的隆起变形,之后各监测点均表现为沉降,7月15日第三道支撑完成后,建筑物的沉降逐渐趋于平稳。
距离基坑边缘较近的监测点CJ-12和CJ-13,变化曲线基本一致,较远的CJ-14和CJ-15的变化趋势相似,前者的沉降值整体上大于后者,可见基坑开挖对周边建筑物产生的影响随着距离的增加而减小。各测点在监测期得最大沉降量分别为6.29,5.42,4.73,3.72 mm,远小于控制值30 mm,表明内支撑可有效减小基坑周边建筑物沉降。
2.4 内支撑轴力分析
基坑原设计为三道钢支撑,轴力设计值分为721,1847,1616 kN。监测点ZL07的三道内支撑轴力随时间的变化曲线如图 5。随着基坑开挖,三道支撑的轴力变化先上下起伏,在开挖完成后逐渐趋于稳定,可能与开挖深度不相等、内支撑预应力损失、间歇性施工等原因有关。5月13日第一道钢筋混凝土支撑施工完成,由于混凝土的收缩,使之受到943 kN的初始压应力。6月17日第二道支撑完成后,钢筋混凝土支撑的轴力明显下降,这是因为第二道支撑分担了基坑内土层卸荷产生的压力。7月15日第三道支撑完成,第一、二道支撑的轴力明显减小,之后三道支撑承担的围护桩后的土压力随基坑开挖深度增加越来越大,轴力也逐渐增大。
第一道支撑的轴力监测值始终大于设计值,其中最大值为1691 kN,超过设计值的135%,故实际施工中用钢筋混凝土支撑代替了钢支撑。第二道支撑轴力最大值为1367 kN,轴力利用率较高。第三道支撑最大值为598 kN,轴力最大利用率为37%,设计偏保守。开挖过程未出现支撑破坏及基坑变形过大等现象,表明基坑支撑设计还有很大的优化空间,可进一步加强安全与经济的统一性。
3. 数值模拟及对比分析
3.1 模型及边界条件
选取14~20轴之间的基坑标准段建立Midas GTS有限元模型,模型尺寸为100 m×48 m×60 m,网格划分如图 6。将模型涉及的土层简化为4层,岩土体采用修正莫尔-库仑(MMC)模型,支护结构采用弹性本构模型。根据基坑开挖步骤定义施工阶段如表 3。
表 3 开挖工况Table 3. Excavation conditions工况 时间 施工状态 1 开始开挖—2018-05-13 开挖深度2.4 m,第一道钢筋混凝土支撑施工完成 2 2018-05-13—2018-06-17 开挖深度9.7 m,第一道钢支撑施工完成 3 2018-06-17—2018-07-15 开挖深度15.75 m,第二道钢支撑施工完成 4 2018-07-15—2018-07-29 开挖深度20.22 m,防水垫层已浇筑,底板钢筋施工 3.2 基坑周边地表沉降对比分析
对比地表沉降监测点DB10-1的模拟值与监测值,如图 7所示。可知模拟值整体上小于实测值,这是由于模拟计算的条件比较理想,简化了土层,假设开挖在降水完成后进行,且未考虑基坑周围可能出现临时堆载等不确定因素,但两条曲线总体的变化趋势一致,说明模拟计算的各参数选取较为合理。实测最大值为-2.17 mm,模拟最大值为-1.5 mm,均远小于控制值-30 mm,由于咬合桩加内支撑的支护结构刚度大,且同一时间的开挖段较短,对支护墙后的红砂岩地层扰动小,因此基坑周边地表累计沉降值远小于控制值。
3.3 内支撑轴力对比分析
选取建模区域内的支撑轴力监测点ZL07,对比第一道支撑的模拟数据和监测数据如图 8。由图可知,两条曲线的变化趋势基本一致,各工况下轴力的模拟值都小于监测值,可能与建模条件较为理想、忽略了实际施工中基坑周边施工机具堆载等情况有关。由于钢筋混凝土支撑的刚度大,整个开挖过程支撑和基坑都未出现过大的变形。
4. 结论
(1)基坑开挖初期距离基坑边缘较近的位置地表沉降量更大,随着开挖深度增加较远位置的沉降量更大;基坑周边地表竖向位移随施工过程呈现沉降-隆起-沉降的起伏变化;内支撑可有效减小基坑周边建筑物沉降。
(2)第一道支撑的轴力始终大于设计值,第二道的轴力利用率高,第三道设计偏保守,支护结构设计可进一步优化,做到经济性和安全性相统一。
(3)各施工监测项目结果与数值模拟结果随时间的变化趋势一致,表明有限元软件可预测深基坑工程可能存在问题并优化支护方案。
(4)开挖过程未出现支撑破坏及基坑变形过大等现象,说明针对定西路车站红砂岩地层岩性条件下的深基坑支护结构合理有效,设计思路对后续兰州地铁同类型红砂岩基坑支护有指导作用。
-
-
[1] POULOS H G. Analysis of the settlement of pile groups[J]. Géotechnique, 1968, 18(4): 449–471. doi: 10.1680/geot.1968.18.4.449
[2] 任青, 黄茂松. 分层地基中柔性高承台群桩基础的竖向振动特性[J]. 土木工程学报, 2009, 42(4): 107–113. doi: 10.3321/j.issn:1000-131X.2009.04.015 REN Qing, HUANG Mao-song. Analysis of axial vibration of floating pile groups with flexible caps in layered soils[J]. China Civil Engineering Journal, 2009, 42(4): 107–113. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.04.015
[3] 吴志明, 黄茂松, 吕丽芳. 桩–桩水平振动动力相互作用研究[J]. 岩土力学, 2007, 28(9): 1848–1855. doi: 10.3969/j.issn.1000-7598.2007.09.015 WU Zhi-ming, HUANG Mao-song, LÜ Li-fang. Research on pile-pile dynamic interaction of lateral vibration[J]. Rock and Soil Mechanics, 2007, 28(9): 1848–1855. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.015
[4] 刘林超, 闫启方, 闫盼. 考虑三维波动的饱和土中管桩群桩的水平振动研究[J]. 岩土力学, 2017, 38(10): 2817–2825. doi: 10.16285/j.rsm.2017.10.006 LIU Lin-chao, YAN Qi-fang, YAN Pan. Horizontal vibration of pipe pile groups in saturated soil considering three-dimensional wave effects[J]. Rock and Soil Mechanics, 2017, 38(10): 2817–2825. (in Chinese) doi: 10.16285/j.rsm.2017.10.006
[5] ZHANG S P, CUI C Y, YANG G. Vertical dynamic impedance of pile groups partially embedded in multilayered, transversely isotropic, saturated soils[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 106–115. doi: 10.1016/j.soildyn.2018.11.003
[6] KAYNIA A M. Dynamic Stiffness dnd Seismic Response of Pile Groups[D]. Cambridge: Massachusetts Institute of Technology, 1982.
[7] DOBRY R, GAZETAS G. Simple method for dynamic stiffness and damping of floating pile groups[J]. Géotechnique, 1988, 38(4): 557–574. doi: 10.1680/geot.1988.38.4.557
[8] MYLONAKIS G, GAZETAS G. Vertical vibration and additional distress of grouped piles in layered soil[J]. Soils and Foundations, 1998, 38(1): 1–14. doi: 10.3208/sandf.38.1
[9] MYLONAKIS G. Contributions to Static and Seismic Analysis of Piles and Pile-Supported Bridge Piers[D]. Buffalo : State University of New York at Buffalo, 1995.
[10] 蒯行成, 沈蒲生. 层状介质中群桩水平动力阻抗的简化计算方法[J]. 振动工程学报, 1998, 11(3): 258–264. doi: 10.16385/j.cnki.issn.1004-4523.1998.03.002 KUAI Xing-cheng, SHEN Pu-sheng. Simplified method for calculating horizontal dynamic impedances of pile groups in layered media[J]. Journal of Vibration Engineering, 1998, 11(3): 258–264. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.1998.03.002
[11] 黄茂松, 江杰, 梁发云, 等. 层状地基中桩基础的竖向荷载位移关系非线性分析方法[J]. 岩土工程学报, 2008, 30(10): 1423–1429. doi: 10.3321/j.issn:1000-4548.2008.10.001 HUANG Mao-song, JIANG Jie, LIANG Fa-yun, et al. Nonlinear analysis for settlement of vertically loaded pile foundation in layered soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1423–1429. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.001
[12] 任青, 黄茂松, 钟锐, 等. 部分埋入群桩的竖向振动特性[J]. 岩土工程学报, 2009, 31(9): 1384–1390. doi: 10.3321/j.issn:1000-4548.2009.09.010 REN Qing, HUANG Mao-song, ZHONG Rui, et al. Vertical vibration of partially embedded pile groups[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1384–1390. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.09.010
[13] 陈海兵, 梁发云. 群桩基础水平动力响应简化边界元频域解答[J]. 岩土工程学报, 2014, 36(6): 1057–1063. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15744.shtml CHEN Hai-bing, LIANG Fa-yun. Simplified boundary element method for lateral vibration response of pile groups in frequency domain[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1057–1063. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15744.shtml
[14] 刘林超, 杨骁. 基于薄层法的饱和土桩纵向振动研究[J]. 岩土力学, 2010, 31(1): 92–98. doi: 10.3969/j.issn.1000-7598.2010.01.017 LIU Lin-chao, YANG Xiao. Study of longitudinal vibrations of pile in saturated soil based on layer method[J]. Rock and Soil Mechanics, 2010, 31(1): 92–98. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.017
[15] 刘林超, 杨骁. 饱和土中桩-桩竖向动力相互作用及群桩竖向振动[J]. 工程力学, 2011, 28(1): 124–130, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101022.htm LIU Lin-chao, YANG Xiao. Pile to pile vertical dynamic interaction and vertical vibration of pile groups in saturated soil[J]. Engineering Mechanics, 2011, 28(1): 124–130, 137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101022.htm
[16] 史吏, 王慧萍, 孙宏磊, 等. 群桩基础引发饱和地基振动的近似解析解[J]. 岩土力学, 2019, 40(5): 1750–1760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905015.htm SHI Li, WANG Hui-ping, SUN Hong-lei, et al. Approximate analytical solution on vibrations of saturated ground induced by pile foundations[J]. Rock and Soil Mechanics, 2019, 40(5): 1750–1760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905015.htm
[17] 熊辉, 江雅丰, 禹荣霞. 层状地基中基于Laplace变换的桩基横向振动阻抗计算[J]. 岩土力学, 2018, 39(5): 1901–1907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805044.htm XIONG Hui, JIANG Ya-feng, YU Rong-xia. Lateral vibration impedance of piles embedded in layered soil based on Laplace transform[J]. Rock and Soil Mechanics, 2018, 39(5): 1901–1907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805044.htm
[18] QU L M, DING X M, KOUROUSSIS G, et al. Dynamic interaction of soil and end-bearing piles in sloping ground: numerical simulation and analytical solution[J]. Computers and Geotechnics, 2021, 134: 103917.
[19] KAYNIA A M, KAUSEL E. Dynamics of piles and pile groups in layered soil media[J]. Soil Dynamics and Earthquake Engineering, 1991, 10(8): 386–401.
[20] RADHIMA J, KANELLOPOULOS K, GAZETAS G. Static and dynamic lateral non-linear pile–soil–pile interaction[J]. Géotechnique, 2022, 72(7): 642–657.
[21] Geotechnical and Foundation Design Considerations: API RP 2GEO—2011 (R2014)[S]. 2014.
[22] Support Structures for Wind Turbines: DNV GL—ST—0126[S]. Oslo: Det Norske Veritas, 2016.
[23] POESSET J M. Stiffness and damping coefficients of foundations[C]// Proc., Dynamic Response of Pile Foundations: Analytical Aspects, ASCE, New York, 1980: 1–3.
[24] NOVAK M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4): 574–598.
[25] NOVAK M, ABOUL-ELLA F, NOGAMI T. Dynamic soil reactions for plane strain case[J]. Journal of the Engineering Mechanics Division, 1978, 104(4): 953–959.
[26] NOGAMI T, KONAGAI K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, 1986, 112(11): 1241–1252.
-
本文视频
其他相关附件
-
DOCX格式
论文文本介绍 点击下载(268KB)
-