• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Chang-jie, CUI Yi-qin, DING Xuan-ming, LUAN Lu-bao. Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005
Citation: ZHENG Chang-jie, CUI Yi-qin, DING Xuan-ming, LUAN Lu-bao. Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005

Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads

More Information
  • Received Date: September 08, 2021
  • Available Online: December 13, 2022
  • An analytical model for pile-soil-vertical coupled vibration of the pile considering the scattering effects of the passive pile is proposed based on the classical plane strain assumption. The governing equation for the soil is solved to obtain the expressions for the vertical displacement and resistance of the soil and the attenuation function of the soil displacement. Based on rigorous pile-soil interaction, the pile-interaction factor of the pile considering the scattering effects of the passive pile is obtained by solving the displacement of the active pile under vertical excitation and the displacement of the passive pile caused by the vibration of the active pile, as well as the displacement of the active pile caused by the scattering waves of the passive pile. Based on the modified pile-pile interaction factor, a stiffness-matrix is then established to derive the vertical dynamic responses of the pile groups by considering the scattering effects of the passive pile. Then the analytical solution for the vertical dynamic impedance of the pile groups is derived by incorporating the property of pile cap and the superposition principle. Finally, some arithmetical cases are presented to conduct the numerical analysis. It is found that the degenerated solution for the present solution agrees well with the existing one. The scattering effects cannot be ignored for the pile groups with small pile spacing. The pile spacing and slenderness ratio have considerable effects on the pile-interaction factor of the pile and the vertical dynamic impedance of the pile groups.
  • [1]
    POULOS H G. Analysis of the settlement of pile groups[J]. Géotechnique, 1968, 18(4): 449–471. doi: 10.1680/geot.1968.18.4.449
    [2]
    任青, 黄茂松. 分层地基中柔性高承台群桩基础的竖向振动特性[J]. 土木工程学报, 2009, 42(4): 107–113. doi: 10.3321/j.issn:1000-131X.2009.04.015

    REN Qing, HUANG Mao-song. Analysis of axial vibration of floating pile groups with flexible caps in layered soils[J]. China Civil Engineering Journal, 2009, 42(4): 107–113. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.04.015
    [3]
    吴志明, 黄茂松, 吕丽芳. 桩–桩水平振动动力相互作用研究[J]. 岩土力学, 2007, 28(9): 1848–1855. doi: 10.3969/j.issn.1000-7598.2007.09.015

    WU Zhi-ming, HUANG Mao-song, LÜ Li-fang. Research on pile-pile dynamic interaction of lateral vibration[J]. Rock and Soil Mechanics, 2007, 28(9): 1848–1855. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.015
    [4]
    刘林超, 闫启方, 闫盼. 考虑三维波动的饱和土中管桩群桩的水平振动研究[J]. 岩土力学, 2017, 38(10): 2817–2825. doi: 10.16285/j.rsm.2017.10.006

    LIU Lin-chao, YAN Qi-fang, YAN Pan. Horizontal vibration of pipe pile groups in saturated soil considering three-dimensional wave effects[J]. Rock and Soil Mechanics, 2017, 38(10): 2817–2825. (in Chinese) doi: 10.16285/j.rsm.2017.10.006
    [5]
    ZHANG S P, CUI C Y, YANG G. Vertical dynamic impedance of pile groups partially embedded in multilayered, transversely isotropic, saturated soils[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 106–115. doi: 10.1016/j.soildyn.2018.11.003
    [6]
    KAYNIA A M. Dynamic Stiffness dnd Seismic Response of Pile Groups[D]. Cambridge: Massachusetts Institute of Technology, 1982.
    [7]
    DOBRY R, GAZETAS G. Simple method for dynamic stiffness and damping of floating pile groups[J]. Géotechnique, 1988, 38(4): 557–574. doi: 10.1680/geot.1988.38.4.557
    [8]
    MYLONAKIS G, GAZETAS G. Vertical vibration and additional distress of grouped piles in layered soil[J]. Soils and Foundations, 1998, 38(1): 1–14. doi: 10.3208/sandf.38.1
    [9]
    MYLONAKIS G. Contributions to Static and Seismic Analysis of Piles and Pile-Supported Bridge Piers[D]. Buffalo : State University of New York at Buffalo, 1995.
    [10]
    蒯行成, 沈蒲生. 层状介质中群桩水平动力阻抗的简化计算方法[J]. 振动工程学报, 1998, 11(3): 258–264. doi: 10.16385/j.cnki.issn.1004-4523.1998.03.002

    KUAI Xing-cheng, SHEN Pu-sheng. Simplified method for calculating horizontal dynamic impedances of pile groups in layered media[J]. Journal of Vibration Engineering, 1998, 11(3): 258–264. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.1998.03.002
    [11]
    黄茂松, 江杰, 梁发云, 等. 层状地基中桩基础的竖向荷载位移关系非线性分析方法[J]. 岩土工程学报, 2008, 30(10): 1423–1429. doi: 10.3321/j.issn:1000-4548.2008.10.001

    HUANG Mao-song, JIANG Jie, LIANG Fa-yun, et al. Nonlinear analysis for settlement of vertically loaded pile foundation in layered soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1423–1429. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.001
    [12]
    任青, 黄茂松, 钟锐, 等. 部分埋入群桩的竖向振动特性[J]. 岩土工程学报, 2009, 31(9): 1384–1390. doi: 10.3321/j.issn:1000-4548.2009.09.010

    REN Qing, HUANG Mao-song, ZHONG Rui, et al. Vertical vibration of partially embedded pile groups[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1384–1390. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.09.010
    [13]
    陈海兵, 梁发云. 群桩基础水平动力响应简化边界元频域解答[J]. 岩土工程学报, 2014, 36(6): 1057–1063. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15744.shtml

    CHEN Hai-bing, LIANG Fa-yun. Simplified boundary element method for lateral vibration response of pile groups in frequency domain[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1057–1063. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15744.shtml
    [14]
    刘林超, 杨骁. 基于薄层法的饱和土桩纵向振动研究[J]. 岩土力学, 2010, 31(1): 92–98. doi: 10.3969/j.issn.1000-7598.2010.01.017

    LIU Lin-chao, YANG Xiao. Study of longitudinal vibrations of pile in saturated soil based on layer method[J]. Rock and Soil Mechanics, 2010, 31(1): 92–98. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.017
    [15]
    刘林超, 杨骁. 饱和土中桩-桩竖向动力相互作用及群桩竖向振动[J]. 工程力学, 2011, 28(1): 124–130, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101022.htm

    LIU Lin-chao, YANG Xiao. Pile to pile vertical dynamic interaction and vertical vibration of pile groups in saturated soil[J]. Engineering Mechanics, 2011, 28(1): 124–130, 137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101022.htm
    [16]
    史吏, 王慧萍, 孙宏磊, 等. 群桩基础引发饱和地基振动的近似解析解[J]. 岩土力学, 2019, 40(5): 1750–1760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905015.htm

    SHI Li, WANG Hui-ping, SUN Hong-lei, et al. Approximate analytical solution on vibrations of saturated ground induced by pile foundations[J]. Rock and Soil Mechanics, 2019, 40(5): 1750–1760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905015.htm
    [17]
    熊辉, 江雅丰, 禹荣霞. 层状地基中基于Laplace变换的桩基横向振动阻抗计算[J]. 岩土力学, 2018, 39(5): 1901–1907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805044.htm

    XIONG Hui, JIANG Ya-feng, YU Rong-xia. Lateral vibration impedance of piles embedded in layered soil based on Laplace transform[J]. Rock and Soil Mechanics, 2018, 39(5): 1901–1907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805044.htm
    [18]
    QU L M, DING X M, KOUROUSSIS G, et al. Dynamic interaction of soil and end-bearing piles in sloping ground: numerical simulation and analytical solution[J]. Computers and Geotechnics, 2021, 134: 103917.
    [19]
    KAYNIA A M, KAUSEL E. Dynamics of piles and pile groups in layered soil media[J]. Soil Dynamics and Earthquake Engineering, 1991, 10(8): 386–401.
    [20]
    RADHIMA J, KANELLOPOULOS K, GAZETAS G. Static and dynamic lateral non-linear pile–soil–pile interaction[J]. Géotechnique, 2022, 72(7): 642–657.
    [21]
    Geotechnical and Foundation Design Considerations: API RP 2GEO—2011 (R2014)[S]. 2014.
    [22]
    Support Structures for Wind Turbines: DNV GL—ST—0126[S]. Oslo: Det Norske Veritas, 2016.
    [23]
    POESSET J M. Stiffness and damping coefficients of foundations[C]// Proc., Dynamic Response of Pile Foundations: Analytical Aspects, ASCE, New York, 1980: 1–3.
    [24]
    NOVAK M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4): 574–598.
    [25]
    NOVAK M, ABOUL-ELLA F, NOGAMI T. Dynamic soil reactions for plane strain case[J]. Journal of the Engineering Mechanics Division, 1978, 104(4): 953–959.
    [26]
    NOGAMI T, KONAGAI K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, 1986, 112(11): 1241–1252.
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (202) PDF downloads (58) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return