• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

膨胀土滑坡与工程边坡新型防治技术与工程示范研究

叶为民, 孔令伟, 胡瑞林, 查甫生, 石胜伟, 刘樟荣

叶为民, 孔令伟, 胡瑞林, 查甫生, 石胜伟, 刘樟荣. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009
引用本文: 叶为民, 孔令伟, 胡瑞林, 查甫生, 石胜伟, 刘樟荣. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009
YE Wei-min, KONG Ling-wei, HU Rui-lin, ZHA Fu-sheng, SHI Sheng-wei, LIU Zhang-rong. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009
Citation: YE Wei-min, KONG Ling-wei, HU Rui-lin, ZHA Fu-sheng, SHI Sheng-wei, LIU Zhang-rong. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009

膨胀土滑坡与工程边坡新型防治技术与工程示范研究  English Version

基金项目: 

国家重点研发计划项目 2019YFC1509900

详细信息
    作者简介:

    叶为民(1963—),男,工学博士,同济大学特聘教授,博士生导师,地质工程上海市重点学科带头人,宝钢优秀教师。兼任国际工程地质与环境协会废物处置专业委员会(C36)主席。长期从事环境地质、非饱和土工程地质与膨胀性特殊土研究。主持国家自然基金项目8项(含重点基金项目2项、重大仪器项目1项),国家重点研发计划项目1项,国家“863”课题1项,“973”项目子课题1项,国防科工局(委)“十二五”、”“十三五”计划项目各1项等省部级以上项目40余项;发表论文300余篇,其中SCI核心合集论文170余篇,被SCI引用2900余次,H指数30;获教育部自然科学一等奖(排名1)等省部级奖6项。主(参)编著作(教材)12部(本);主(参)编国家、行业和团体标准3部。入选“全球前2%顶尖科学家榜单”和“2020爱思唯尔‘中国高被引学者’榜单”。主持国家双语示范课程、上海市全英语示范课程各一门,指导上海市优秀博士论文2篇,获国家级教学成果二等奖1项,上海市特等、一等和二等奖各1项。兼任2006—2010、2013—2017和2018—2022年教育部高等学校教学指导委员会委员。E-mail: ye_tju@tongji.edu.cn

    通讯作者:

    刘樟荣,E-mail: liuzr@tongji.edu.cn

  • 中图分类号: TU41

New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils

  • 摘要: 中国膨胀土分布十分广泛且与人类活动密集区高度重叠。由于其胀缩性、裂隙性与超固结性(“三性”)特征,膨胀土极易受气候变化和工程活动影响而诱发滑坡灾害。然而,传统的防治技术无法适应具有“三性”特征的膨胀土滑坡与工程边坡治理要求,导致滑坡屡治不止,成为工程“癌症”。“十三五”国家重点研发计划项目“膨胀土滑坡与工程边坡新型防治技术与工程示范研究”紧扣膨胀土的“三性”及其互馈作用,揭示了膨胀土滑坡和工程边坡的失稳机理与关键致灾因子,突破了膨胀土边坡多场信息监测与滑坡灾害早期预警技术,研发了“表-浅-深”一体化的膨胀土边坡韧性生态防护技术,形成了膨胀土边坡防护工程健康诊断方法与快速修复技术,初步集成了膨胀土边坡生态防护综合技术体系并实施工程示范三处。项目研究成果为膨胀土滑坡与工程边坡防治提供了新理论、新技术和新工法,社会、经济和环境效益显著,应用前景广阔。
    Abstract: Expansive soils are widely distributed in China, especially in the regions with high population density. Characterized by the well-known 'three properties', i.e., swelling-shrinkage, cracking and over-consolidation, the expansive soils are highly susceptible to climate change and engineering activities, and thus can easily cause landslides. Due to the lack of consideration to the interactive 'three properties' of the expansive soils, the traditional techniques can hardly be effective for the treatment of expansive soil landslides and engineering slopes, leaving the latter known as 'cancer' that imperils the safety of engineering projects. During the 13th Five-Year Plan period, the National Key Research and Development Program of China "New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils" was approved. With special attention to the interactive 'three properties' of the expansive soils, the program has made series of innovations including the instability mechanism and the key disaster factors of expansive soil landslides, multi-field information monitoring and early warning techniques, 'surface-shallow-deep' integrated and ecological reinforcement technique, health diagnosis and rapid restoration techniques for slope protection structures. These techniques are integrated as a technical system and have been implemented in three engineering demonstrations. The relevant achievements have provided new theories, techniques and construction methods for treating the landslides and engineering slopes of the expansive soils. Meanwhile, they have achieved significant social, economic and environmental benefits, with broad application prospects.
  • 随着浅部资源逐渐枯竭,深部开采逐渐成为煤炭资源开发的常态。近十年来中国的煤炭开采深度不断增加,超过1000 m的矿井达47对[1]。深部煤层面临高瓦斯压力、高地应力、高地温等特殊地质条件,严重威胁着深部矿山的安全开采,导致瓦斯事故发生率居高不下。据统计,2011—2016年期间煤矿发生较大以上瓦斯事故197起、死亡1667人[2]。深部煤矿开采过程中面临的瓦斯问题是影响煤炭安全生产的主要制约因素之一。

    矿山瓦斯动力灾害的本质是开采卸压作用下,煤岩体内部出现微损伤破裂并诱发大规模宏观破坏的动力灾害事故。煤岩瓦斯动力灾害的发生,伴随着煤岩能量的大量释放。声发射监测技术可为研究煤岩瓦斯灾害的诱发机制及预测方法提供科学依据。秦虎等[3]对不同瓦斯压力作用下煤岩的声发射特征进行试验研究,分析了瓦斯压力对煤岩的软化机制,并基于声发射累计振铃计数演化特征构建了煤岩的损伤本构模型。丁鑫等[4]基于声发射时频特征和小波变换方法,对煤岩压缩过程中的应力波的振幅频率进行分析,研究了煤岩强度和信号频带分布之间的关系。陈亮等[5]基于不同压力条件下花岗岩的声发射试验,分析了花岗岩不同破裂阶段的声发射演化机制。熊飞等[6]进行了相交裂隙砂岩压缩试验,分析了不同裂隙角度条件下砂岩的声发射演化特征和裂隙演化贯通直接的对应关系。李宏艳等[7]对煤岩变形破坏过程中的累计振铃计数、声发射能量、频谱变化特征及冲击倾向特征进行了分析。

    基于以上研究成果发现,学者们针对含瓦斯煤岩的力学特征研究主要集中在破坏机制和声发射演化机制,针对不同压力作用下煤岩的声发射非线性特征研究较少。基于此,本研究基于三轴渗流-应力耦合试验系统对不同瓦斯压力下煤岩的变形破坏机制及声发射特征进行了分析,对不同瓦斯压力作用下煤岩的声发射非线性演化特征进行研究,以期对煤岩瓦斯灾害的诱发机制研究提供试验和理论基础。

    煤样取自平煤八矿,埋藏深度610~710 m,该工作面平均瓦斯压力1.6 MPa,瓦斯含量16 m3/t。试验设备采用四川大学MTS815岩石力学试验系统。试验气体采用甲烷气体,分别为1, 2, 3和5 MPa,试验围压10 MPa。

    (1)声发射累计振铃计数特征

    孔隙破裂、微裂隙萌生及煤颗粒错动等活动都会以弹性波的形式释放煤体内部储存的能量。声发射设备可以有效的监测煤岩内部微破裂释放的信号。声发射振铃计数是煤岩压缩变形过程中超过设定的声发射门槛值的信号数目,反映了煤岩破裂的严重程度。累计振铃计数是从声发射设备开始记录之后所有的振铃计数之和,二者都可以从不同角度反映煤岩的破裂演化特征。不同瓦斯压力作用下煤岩声发射振铃计数如图1所示。

    图  1  煤岩声发射振铃计数-轴向应变演化曲线
    Figure  1.  Ring count-axial strain evolution curves of acoustic emission of coal

    不同瓦斯压力作用下煤岩的声发射演化特征具有相似的表现形式。在应力加载初期,煤岩的声发射信号较少,为沉寂期。随着应力水平的增加,煤岩的破裂不断增加,声发射信号进入缓慢增加期。接着煤岩进入塑性变形阶段,声发射信号进入快速增加期。最后在峰值阶段附近和峰后阶段进入活跃期和平稳期。

    (2)煤岩的声发射能量特征

    声发射方法可以有效地监测煤岩中裂纹的萌生、扩展及破裂特征。在全应力应变过程中,采用了声发射监测设备跟踪了煤岩在不同瓦斯压力作用下的能量演化过程。图2给出了煤岩在不同瓦斯压力作用下的AE能量随轴向应变的演化规律。含瓦斯煤岩的声发射能量特征随轴向应变的演化可以分为3个阶段,缓慢增加阶段,快速增长阶段,残余状态阶段。缓慢增加阶段对应于峰前的弹性变形阶段,这一阶段煤岩内部的损伤较少出现,煤岩中裂纹发育较少,这一阶段的声发射信号很少,整个阶段的声发射能量较低。接着进入快速增长阶段,煤岩进入峰值应力区域,这时候煤岩接近峰值应力或者已经达到峰值应力,煤岩内部出现了明显破裂,声发射累计能量几乎直线式地上升。最后煤岩进入残余状态阶段,煤岩出现残余变形,声发射累计能量继续增加,但是增加幅度有所减缓。此外,还给出了不同应力状态下煤岩声发射定位信号。声发射定位信号和累计能量相匹配,峰前阶段煤岩内部出现随机分布的声发射定位信号。当煤岩在峰值应力点附近,声发射定位信号的分布出现了一定的统计特征,集中在煤岩宏观破坏面附近。

    图  2  煤岩声发射能量-轴向应变曲线
    Figure  2.  Acoustic emission energy-axial strain curves of coal

    设观测到的声发射时间序列为{x(ti)}(i=1, 2, …, n),根据“时间延迟方法”重构相空间,将时间序列拓展成m维[8]。排列中的每一列为,{x(ti), x(ti+τ), x(ti+2τ), …, x(ti+(m-1)τ)}, τ=kΔt为延迟时间,Δt为采样周期。

    嵌入维数至少是吸引子维数的2倍,即m≥2 d+1。从嵌入空间的N0个向量中,计算其他N0-1个向量到它的距离:

    (1)

    对所有的An(i=1, 2, …, N0)重复这一过程,即得到关联积分函数:

    (2)

    式中,Heaviside函数为

    (3)

    关联积分可用下式求得

    (4)

    对于不同的r,如果这些点满足上式具有一定的线性关系,则表明声发射序列具有分形特征。图1表示了不同瓦斯压力作用下典型煤样的应力应变与声发射累计振铃数的关系。将煤岩破坏过程划分为弹性、塑性和峰后阶段,声发射序列拟合结果见图3

    图  3  不同瓦斯压力下煤岩的声发射关联维数
    Figure  3.  Acoustic emission correlation dimensions of coal under different gas pressures

    弹性、塑性和峰后阶段的煤岩声发射信号均表现出较好的分形特征。瓦斯压力作用下煤岩的声发射关联维数在峰前阶段先下降随后在峰后阶段出现增加。峰前阶段声发射关联维数的减小表明煤岩内部微破裂由随机分布向宏观主要破裂面聚集。峰后阶段,煤岩出现了宏观破裂,产生了大量的声发射信号。煤岩损伤出现了大幅度提升,声发射关联维数也有所增长。声发射关联维数可以作为一个有效的数学统计参量来描述这种煤岩内部微裂隙演化及破裂演化机制,可以有效的分析预测煤岩的破裂特征。可以在下一步研究中进一步细化,根据应力应变曲线划分更细致的阶段,以分析含瓦斯煤体的声发射分形特征的规律。

    图4为不同瓦斯压力下煤的声发射关联维数。在各个阶段,声发射分形维数和瓦斯压力呈现正相关的关系,也就是瓦斯压力越大,声发射分形维数越高。可能是由于高瓦斯压力造成了煤岩微孔隙,微裂隙强度的降低,煤岩的破坏特征更明显,引起了声发射分形维数的提高。

    图  4  不同瓦斯压力下煤岩声发射关联维数
    Figure  4.  Correlation dimension of acoustic emission of coal under different gas pressures

    利用渗流-应力耦合试验系统进行了不同瓦斯压力作用下煤岩的压缩试验,分析了煤岩不同变形破坏阶段的声发射演化特征。主要结论如下:

    (1)不同瓦斯压力作用下煤岩的声发射演化特征具有相似的表现形式。在应力加载初期,煤岩的声发射信号较少,为沉寂期。随着应力水平的增加,煤岩的破裂不断增加,声发射信号进入缓慢增加期。接着煤岩进入塑性变形阶段,声发射信号进入快速增加期。最后在峰值阶段附近和峰后阶段进入活跃期和平稳期。

    (2)煤岩的声发射能量和体应变演化有较好的对应关系。随着瓦斯压力的减小,声发射能量快速增加阶段曲线的变得更加陡峭,也表明煤岩的脆性破坏特性加强。随着瓦斯压力的增加,在相同的偏应力水平下,总能量耗散和耗散效率均有所增加。

    (3)声发射分形数呈现在峰值段之前下降,峰后又增长的趋势。峰前阶段,分维的降低表明煤岩内部微破裂的增多和主破裂的出现,煤岩内部损伤由无序随机分布逐渐向宏观有序破坏过渡。

    致谢: 本文采用了项目骨干柏巍、顾凯、唐朝生、刘尊言、许龙、康博、王琼、苏薇、李志清、张冬梅、蔡强、贺伟明及其团队的部分研究成果,一并表示感谢。感谢参加本项目的有关单位和科研人员的辛勤付出!
  • 图  1   课题间逻辑关系

    Figure  1.   Relationship among tasks

    图  2   中国膨胀(岩)土边坡灾害点分布(473处)

    Figure  2.   Expansive soils-related disasters in China (473 cases)

    图  3   不同区域膨胀土边坡灾害类型与关键致灾因子

    Figure  3.   Types and causes of expansive soils-related disasters in different regions of China

    图  4   膨胀土原位力学特性

    Figure  4.   In-situ mechanical behaviors of expansive soils

    图  5   基于变权重模糊综合评判与层次分析法的膨胀土边坡动态安全评价软件

    Figure  5.   Software running with fuzzy-AHP-based variable weight safety evaluation model for safety of expansive soil slopes

    图  6   膨胀土裂隙快速捕获与智能识别技术

    Figure  6.   Fast-capture and intelligent-identification techniques for cracks of expansive soils

    图  7   基于分布式光纤测温系统的膨胀土水分监测技术

    Figure  7.   Distributed temperature sensor (DTS)-based moisture monitoring technique

    图  8   基于分布式光纤测温系统的膨胀土裂隙监测技术

    Figure  8.   Distributed fiber optic sensing (DFOS)-based crack monitoring technique

    图  9   降雨入渗作用下膨胀土变形与裂隙度演化特征

    Figure  9.   Temporal evolution of deformation and crack density of expansive soils subjected to rainfall

    图  10   膨胀土边坡“表-浅-深”一体化韧性生态防护技术

    Figure  10.   'Surface-shallow-deep' integrated and ecological reinforcement technology for expansive soil slopes

    图  11   钙基纳米二氧化硅改性膨胀土的水-力特性

    Figure  11.   Hydro-mechanical behaviors of expansive soils modified with Ca-SiO2 powder

    图  12   PSS和LSA治愈膨胀土裂隙示意图

    Figure  12.   Cracks curing using PSS and LSA

    图  13   防护工程健康状态诊断系统

    Figure  13.   Diagnostic system for health status of protection structures

    图  14   多段扩孔式锚杆

    Figure  14.   Multi-underreamed anchors (MUAs)

    图  15   排水工程聚合物改性水泥砂浆修复材料

    Figure  15.   Polymer-modified cement mortar for ditch repairment

    图  16   瓦东干渠刘岗电灌站#2滑坡(治理前)

    Figure  16.   Landslide No. 2 (before treatment) near Liugang electric irrigation station of Wadong main canal

    图  17   瓦东干渠刘岗电灌站#2滑坡治理方案

    Figure  17.   Design of landslide No. 2 near Liugang electric irrigation station of Wadong main canal

    图  18   瓦东干渠刘岗电灌站#2滑坡监测方案

    Figure  18.   Monitoring program of landslide No. 2 near Liugang electric irrigation station of Wadong main canal

    图  19   瓦东干渠刘岗电灌站#2滑坡(治理后)

    Figure  19.   Landslide No. 2 (after treatment) near Liugang electric irrigation station of Wadong main canal

    图  20   合六叶高速公路K707+900边坡防治方案

    Figure  20.   Design of K707+900 slope of Hefei-Lu'an-Yeji high-speed way

    图  21   合六叶高速公路K707+900边坡防治效果

    Figure  21.   K707+900 slope of Hefei-Lu'an-Yeji high-speed way before and after treatment

    表  1   课题设置

    Table  1   Arrangement of tasks

    课题序号 课题名称 牵头单位 课题负责人
    1 膨胀土滑坡与工程边坡水力作用失稳特征与安全性评价方法 中国科学院武汉岩土力学研究所 孔令伟
    2 膨胀土滑坡和工程边坡实时监测与早期预警技术 中国科学院地质与地球物理研究所 胡瑞林
    3 膨胀土滑坡和工程边坡防治工程新型材料与新型技术 合肥工业大学 查甫生
    4 膨胀土滑坡和工程边坡防护工程健康诊断和快速修复技术 中国地质科学院探矿工艺研究所 石胜伟
    5 膨胀土滑坡和工程边坡生态防护综合技术体系及应用示范 同济大学 叶为民
    下载: 导出CSV

    表  2   膨胀土边坡灾害类型

    Table  2   Disaster types of expansive soil slope

    区域 典型地区 灾害类型 代表性案例
    西南、华南 四川盆地、昆明盆地、南宁盆地、百色盆地 冲蚀、坍塌、滑坡 百东新区百贤路、广西南友高速公路
    东北、华北 延吉盆地、图晖盆地 剥落、胀裂、滑坡 吉林至珲春GDK275边坡
    中部 南襄盆地、江淮丘陵区 整体滑动、浅层滑动 南水北调、淠史杭灌区、引江济汉
    下载: 导出CSV
  • [1] 李生林. 中国膨胀土工程地质研究[M]. 南京: 江苏科学技术出版社, 1992.

    LI Sheng-lin. Studies on the engineering geology of expansive soils in China[M]. Nanjing: Phoenix Science Press, 1992. (in Chinese)

    [2]

    SHI B, JIANG H T, LIU Z B, et al. Engineering geological characteristics of expansive soils in China[J]. Engineering Geology, 2002, 67(1/2): 63–71.

    [3] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1–15. doi: 10.3321/j.issn:1000-4548.2004.01.001

    BAO Cheng-gang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1–15. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.01.001

    [4] 蔡正银, 陈皓, 黄英豪, 等. 考虑干湿循环作用的膨胀土渠道边坡破坏机理研究[J]. 岩土工程学报, 2019, 41(11): 1977–1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm

    CAI Zheng-yin, CHEN Hao, HUANG Ying-hao, et al. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977–1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm

    [5] 殷宗泽, 袁俊平. 膨胀土特性与边坡稳定[M]. 北京: 科学出版社, 2018.

    YIN Zong-ze, YUAN Jun-ping. Characteristics of Expansive Soil and Slope Stability[M]. Beijing: Science Press, 2018. (in Chinese)

    [6] 郑健龙, 杨和平. 公路膨胀土工程[M]. 北京: 人民交通出版社, 2009.

    ZHENG Jian-long, YANG He-ping. Expansive soil engineering in highway[M]. Beijing: China Communications Press, 2009. (in Chinese)

    [7]

    LIANG C, WU Z J, LIU X F, et al. Analysis of shallow landslide mechanism of expansive soil slope under rainfall: a case study[J]. Arabian Journal of Geosciences, 2021, 14(7): 1–11.

    [8] 杨果林, 陈子昂, 张红日, 等. 干湿循环作用下平缓型膨胀土边坡失稳破坏机制研究[J]. 中南大学学报(自然科学版), 2022, 53(1): 95–103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201003.htm

    YANG Guo-lin, CHEN Zi-ang, ZHANG Hong-ri, et al. Collapse mechanism of gentle expansive soil slope in drying and wetting cycles[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 95–103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201003.htm

    [9]

    QI Y Z, WANG Z Z, XU H Q, et al. Instability analysis of a low-angle low-expansive soil slope under seasonal wet-dry cycles and river-level variations[J]. Advances in Civil Engineering, 2020, 2020: 3479575.

    [10] 王淳讙, 黄治峯, 赖世屏, 等. 边坡生命周期防灾监测信息整合及可视化云平台数据库建置研究[J]. 岩土工程学报, 2020, 42(1): 188–194. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001029.htm

    WANG Chwen-huan, HUANG Chih-fong, LAI Shih-ping, et al. et al. Cloud database platform of integrated visualization for life-cycle prevention and safety monitoring of slope hazards[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 188–194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001029.htm

    [11] 杨济铭, 张红日, 陈林, 等. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析[J]. 中南大学学报(自然科学版), 2022, 53(1): 225–238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201025.htm

    YANG Ji-ming, ZHANG Hong-ri, CHEN Lin, et al. Analysis of crack morphology evolution law of expansive soil slope based on digital image correlation technology[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 225–238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201025.htm

    [12] 杨和平, 章高峰, 郑健龙, 等. 膨胀土填筑公路路堤的物理处治技术[J]. 岩土工程学报, 2009, 31(4): 491–500. doi: 10.3321/j.issn:1000-4548.2009.04.001

    YANG He-ping, ZHANG Gao-feng, ZHENG Jian-long, et al. Physical treating techniques of highway embankments filled with expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 491–500. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.04.001

    [13]

    XIE C R, NI P P, XU M J, et al. Combined measure of geometry optimization and vegetation for expansive soil slopes[J]. Computers and Geotechnics, 2020, 123: 103588. doi: 10.1016/j.compgeo.2020.103588

    [14] 谢彦初, 汪磊, 孙德安, 等. 基于组合赋权和聚类方法的膨胀土边坡防护工程健康诊断模型与应用[J]. 中南大学学报(自然科学版), 2022, 53(1): 258–268. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201027.htm

    XIE Yan-chu, WANG Lei, SUN De-an, et al. Health diagnosis model with combination weight and clustering method for protection works of expansive soil slope and its application[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 258–268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201027.htm

    [15]

    LI T G, KONG L W, LIU B H. The California bearing ratio and pore structure characteristics of weakly expansive soil in frozen areas[J]. Applied Sciences, 2020, 10(21): 7576. doi: 10.3390/app10217576

    [16] 李甜果, 孔令伟, 舒荣军. 不同含水率膨胀土动剪切模量特征与原位G-γ衰减曲线确定方法[J]. 振动与冲击, 2021, 40(23): 91–99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm

    LI Tian-guo, KONG Ling-wei, SHU Rong-jun. Dynamic shear modulus characteristics of expansive soil with different moisture contents and determination method of in situ G-γ decay curve[J]. Journal of Vibration and Shock, 2021, 40(23): 91–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm

    [17] 李甜果, 孔令伟, 王俊涛, 等. 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42(10): 2741–2754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110014.htm

    LI Tian-guo, KONG Ling-wei, WANG Jun-tao, et al. Trimodal pore structure evolution characteristics and mechanical effects of expansive soil in seasonally frozen areas based on NMR test[J]. Rock and Soil Mechanics, 2021, 42(10): 2741–2754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110014.htm

    [18]

    LI T G, KONG L W, GUO A G. The deformation and microstructure characteristics of expansive soil under freeze-thaw cycles with loads[J]. Cold Regions Science and Technology, 2021, 192: 103393. doi: 10.1016/j.coldregions.2021.103393

    [19]

    LU Y, GU K, ZHANG Y P, et al. Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms[J]. Science of the Total Environment, 2021, 794: 148608. doi: 10.1016/j.scitotenv.2021.148608

    [20] 黎澄生, 孔令伟, 柏巍, 等. 吸湿路径SWCC曲线预测软件[简称: SWCCHys]1.0[CP]. 登记号: 2020SR1831946, 2020-12-16.

    LI Cheng-sheng, KONG Ling-wei, BAI Wei, et al. Prediction software of SWCC curve of hygroscopic path [Abbreviation: SWCCHys] 1.0[CP]. Registration number: 2020SR1831946, 2020-12-16. (in Chinese)

    [21] 黎澄生, 孔令伟, 柏巍, 等. CT数据分析软件[简称: CT Aya]1.0[CP]. 登记号: 2020SR1843548, 2020-12-17.

    LI Cheng-sheng, KONG Ling-wei, BAI Wei, et al. CT data analysis software [Abbreviation: CTAya]1.0[CP]. Registration number: 2020SR1843548, 2020-12-17. (in Chinese)

    [22]

    LUO X Q, KONG L W, BAI W. Application of environmental friendly modifier-super hydrophobic Nano-SiO2 in enhancing the stability of expansive soil [J]. Journal of Testing and Evaluation, 2022, in press.

    [23]

    LU J F, KONG L W, LIU X Y, et al. Multihazard risk model for reliability analysis of expansive soil landslide based on T–S fuzzy logic[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8(2): 04022008. doi: 10.1061/AJRUA6.0001225

    [24] 叶为民. 膨胀土边坡动态模糊综合评价系统V1.0[CP]. 登记号: 2021SR1461127, 2021-7-15.

    YE Wei-min. Variable Fuzzy-AHP evaluation system for expansive soil slopes V1.0[CP]. Registration number: 2021SR1461127, 2021-7-15. (in Chinese)

    [25]

    CHENG Q, TANG C S, XU D, et al. Water infiltration in a cracked soil considering effect of drying-wetting cycles[J]. Journal of Hydrology, 2021, 593: 125640. doi: 10.1016/j.jhydrol.2020.125640

    [26]

    LI Z Q, KONG Y X, FU L, et al. Model test study on deformation characteristics of a fissured expansive soil slope subjected to loading and irrigation[J]. Applied Sciences, 2021, 11(22): 10891. doi: 10.3390/app112210891

    [27] 彭晟赟. 基于地质大数据的膨胀土裂隙分析[D]. 上海: 同济大学, 2020.

    PEN Sheng-yun. Expansion Soil Crack Analysis Based on Geological Big Data[D]. Shanghai: Tongji University, 2020. (in Chinese)

    [28] 潘伟健. 基于点云数据的膨胀土边坡裂隙模型研究[D]. 长春: 吉林大学, 2021.

    PAN Wei-jian. Research on Model for Describing Cracks on Expansive Soil Slope Using Point Cloud Data[D]. Changchun: Jilin University, 2021. (in Chinese)

    [29] 胡启成, 叶为民, 王琼, 等. 基于地质图像大数据的岩性识别研究[J]. 工程地质学报, 2020, 28(6): 1433–1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006030.htm

    HU Qi-cheng, YE Wei-min, WANG Qiong, et al. Recognition of lithology with big data of geological images[J]. Journal of Engineering Geology, 2020, 28(6): 1433–1440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006030.htm

    [30] 胡启成, 叶为民. 基于深度学习模型的岩性识别软件[简称: 岩性识别软件] 1.0[CP]. 登记号: 2021SR1139780, 2021-08-03.

    HU Qi-cheng, YE Wei-min. Deep Learning Model Based Lithology Recognition Software 1.0[CP]. Resgistration Number: 2021SR1139780, 2021-08-03. (in Chinese)

    [31]

    XU J J, ZHANG H, TANG C S, et al. Automatic soil desiccation crack recognition using deep learning[J]. Géotechnique, 2022, 72(4): 337–349. doi: 10.1680/jgeot.20.P.091

    [32]

    XU J J, ZHANG H, TANG C S, et al. Automatic soil crack recognition under uneven illumination condition with the application of artificial intelligence[J]. Engineering Geology, 2022, 296: 106495. doi: 10.1016/j.enggeo.2021.106495

    [33]

    CHENG Q, TANG C S, ZHU C, et al. Drying-induced soil shrinkage and desiccation cracking monitoring with distributed optical fiber sensing technique[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8): 3959-3970. doi: 10.1007/s10064-020-01809-8

    [34] 张硕, 刘尊言, 任金象. 安全监测平台通用数据接口软件[简称: 通用数据接口软件]V1.0[CP]. 登记号: 2020SR1779665, 2020-12-10.

    ZHANG Shuo, LIU Zun-yan, REN Jin-xiang. Safety Monitoring Platform Application Programming Interface Software [Abbreviation: APIS] V1.0[CP]. Registration number: 2020SR1779665, 2020-12-10. (in Chinese)

    [35] 刘尊言, 夏顺盈, 张硕. 安全监测平台综合通信软件[简称: 综合通信软件]V1.0[CP]. 登记号: 2020SR1779662, 2020-12-10.

    LIU Zun-yan, XIA Shun-Ying, ZHANG Shuo. Safety Monitoring Platform Communication Software [Abbreviation: COMMS] V1.0[CP]. Registration number: 2020SR1779662, 2020-12-10. (in Chinese)

    [36] 查甫生, 陈宗涵, 许龙, 等. 基于毛细阻滞机理的导吸式膨胀土边坡浅层控水覆盖系统: CN111636443B[P]. 2021-12-07.

    ZHA Fu-sheng, CHEN Zong-han, XU Long, et al. Shallow Water Control Covering System Based on Capillary Barrier Methods for Expansive Soil Slopes: CN111636443B[P]. 2021-12-07. (in Chinese)

    [37] 查甫生, 胡盛涛, 孙献国, 等. 带毛细抽吸结构的膨胀土边坡浅-表层控水防护覆盖系统: CN112663630A[P]. 2021-04-16.

    ZHA Fu-sheng, HU Sheng-tao, SUN Xian-guo, et al. Shallow-Surface Water Control Covering System with Capillary Suction Conformation for Expansive Soil Slopes: CN112663630A[P]. 2021-04-16. (in Chinese)

    [38] 查甫生, 潘俊, 康博, 等. 一种柔性钙基材料改性包边修复膨胀土边坡的方法: CN112663590B[P]. 2021-11-23.

    ZHA Fu-sheng, PAN Jun, KANG Bo, et al. A Method for Repairing Expansive Soil Slope with Modified Edge Wrapping of Flexible Calcium Based Materials: CN112663590B[P]. 2021-11-23. (in Chinese)

    [39]

    TIAN Y F, LI Z Q, WANG S J, et al. Application of MICP in water stability and hydraulic erosion control of phosphogypsum material in slope[J]. Applied Sciences, 2022, 12(4): 1783. doi: 10.3390/app12041783

    [40] 李志清, 周应新, 侯建伟, 等. 一种使用磷石膏与微生物改良膨胀土路堤的设计施工方法: CN111424485B[P]. 2021-03-02.

    LI Zhi-qing, ZHOU Ying-xin, HOU Wei-jian, et al. Design and Construction Method for Expansive Soil Embankment Modified by Phosphogypsum and Microorganism: CN111424485B[P]. 2021-03-02. (in Chinese)

    [41] LI Z Q. Construction Method for Ecologically Protecting Expansive Soil Slope by Combining Phosphogypsum with Microbial Mineralization[P]. USA Patent. US10913894B1. 授权日: 2021-02-09. ((in Chinese)).
    [42] 王琼, 李丹, 叶为民, 等. 一种新型压密注浆土钉及其拉拔试验装置: CN111794293A[P]. 20201020.

    WANG Qiong, LI Dan, YE Wei-min, et al. A New Compaction Grouting Soil Nail and Its Pull-Out Test Device: CN111794293A[P]. 2020-10-20. (in Chinese)

    [43] 许辉, 王琼, 王楠, 等. 膨胀土裂隙图像数值化信息提取系统V1.0[CP]. 登记号: 2022SR0206121, 2021-11-30.

    XU Hui, WANG Qiong, WANG Nan, et al. Digital information extraction system of expansive soil crack image[CP]. Registration number: 2022SR0206121, 2021-11-30. (in Chinese)

    [44] 贺伟明, 石胜伟, 蔡强, 等. 考虑膨胀作用对抗剪强度影响的膨胀土边坡稳定性分析[J]. 岩石力学与工程学报. (录用待刊)

    HE Wei-ming, SHI Sheng-wei, CAI Qiang, et al. Stability analysis of expansive soil slope considering the influence of swelling on shear strength [J]. Chinese Journal of Rock Mechanics and Engineering. (in Chinese)

    [45] 张冬梅. 防护工程健康状态诊断系统软件1.0[CP]. 登记号: 2022SR0100998, 2022-01-08.

    ZHANG Dong-mei. Protection engineering health status diagnosis software 1.0[CP]. Registration number: 2022SR0100998, 2022-01-08. (in Chinese)

    [46]

    ZHOU Y T, SHI S W, CAI Q. A model test and the ultimate capacity analysis of multi-underreamed anchors in silty clay. [J]. Soil Mechanics and Foundation Engineering, 2022. (in press)

    [47] 杨栋, 石胜伟, 蔡强, 等. 一种膨胀土边坡防护的压力型氮气锚杆结构及适用方法: 中国专利, 202011516483.2[P]. 2021-12-07.

    YANG Dong, SHI Sheng-wei, CAI Qiang, et al. A Pressure Nitrogen Bolt Structure for Expansive Soil Slope Protection and Its Applicable Method: CN202011516483.2[P]. 2021-12-07. (in Chinese)

    [48] 贺伟明, 石胜伟, 蔡强, 等. 双掺氯乙烯-乙烯-乙烯醚乳液与橡胶颗粒改性水泥砂浆的性能研究[J]. 混凝土. (录用待刊)

    HE Wei-ming, SHI Sheng-wei, CAI Qiang, et al. Study on properties of cement mortar modified by vinyl chloride-ethylene-vinyl ether emulsion and rubber particles[J]. Concrete. (in press) (in Chinese)

  • 期刊类型引用(5)

    1. 陈文昭,胡荣,刘夕奇,卢铎方. 高温作用后玄武岩声发射特性及破裂机制研究. 南华大学学报(自然科学版). 2024(03): 15-23+31 . 百度学术
    2. 胡超,杜世霖,林勇华,叶焰中. 裂隙花岗岩单轴压缩力学特性及声发射特征研究. 水利水电技术(中英文). 2024(S2): 229-235 . 百度学术
    3. 刘贵康,李聪,游镇西,胡云起,黄伟,王瑞泽,徐萌. 煤矿井下原位磁控多向保压取心原理与技术. 煤田地质与勘探. 2023(08): 13-20 . 百度学术
    4. 王磊,王安铖,陈礼鹏,李少波,刘怀谦. 含瓦斯煤循环冲击动力学特性与裂隙扩展特征. 岩石力学与工程学报. 2023(11): 2628-2642 . 百度学术
    5. 曹伟伟,温欣,张晓彬,洪学娣. 振动频率对含瓦斯煤渗透特性的影响及模型验证. 矿业安全与环保. 2022(03): 39-44 . 百度学术

    其他类型引用(4)

图(21)  /  表(2)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  49
  • PDF下载量:  182
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回