• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YE Wei-min, KONG Ling-wei, HU Rui-lin, ZHA Fu-sheng, SHI Sheng-wei, LIU Zhang-rong. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009
Citation: YE Wei-min, KONG Ling-wei, HU Rui-lin, ZHA Fu-sheng, SHI Sheng-wei, LIU Zhang-rong. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009

New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils

More Information
  • Received Date: March 04, 2022
  • Available Online: September 22, 2022
  • Expansive soils are widely distributed in China, especially in the regions with high population density. Characterized by the well-known 'three properties', i.e., swelling-shrinkage, cracking and over-consolidation, the expansive soils are highly susceptible to climate change and engineering activities, and thus can easily cause landslides. Due to the lack of consideration to the interactive 'three properties' of the expansive soils, the traditional techniques can hardly be effective for the treatment of expansive soil landslides and engineering slopes, leaving the latter known as 'cancer' that imperils the safety of engineering projects. During the 13th Five-Year Plan period, the National Key Research and Development Program of China "New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils" was approved. With special attention to the interactive 'three properties' of the expansive soils, the program has made series of innovations including the instability mechanism and the key disaster factors of expansive soil landslides, multi-field information monitoring and early warning techniques, 'surface-shallow-deep' integrated and ecological reinforcement technique, health diagnosis and rapid restoration techniques for slope protection structures. These techniques are integrated as a technical system and have been implemented in three engineering demonstrations. The relevant achievements have provided new theories, techniques and construction methods for treating the landslides and engineering slopes of the expansive soils. Meanwhile, they have achieved significant social, economic and environmental benefits, with broad application prospects.
  • [1]
    李生林. 中国膨胀土工程地质研究[M]. 南京: 江苏科学技术出版社, 1992.

    LI Sheng-lin. Studies on the engineering geology of expansive soils in China[M]. Nanjing: Phoenix Science Press, 1992. (in Chinese)
    [2]
    SHI B, JIANG H T, LIU Z B, et al. Engineering geological characteristics of expansive soils in China[J]. Engineering Geology, 2002, 67(1/2): 63–71.
    [3]
    包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1–15. doi: 10.3321/j.issn:1000-4548.2004.01.001

    BAO Cheng-gang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1–15. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.01.001
    [4]
    蔡正银, 陈皓, 黄英豪, 等. 考虑干湿循环作用的膨胀土渠道边坡破坏机理研究[J]. 岩土工程学报, 2019, 41(11): 1977–1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm

    CAI Zheng-yin, CHEN Hao, HUANG Ying-hao, et al. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977–1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm
    [5]
    殷宗泽, 袁俊平. 膨胀土特性与边坡稳定[M]. 北京: 科学出版社, 2018.

    YIN Zong-ze, YUAN Jun-ping. Characteristics of Expansive Soil and Slope Stability[M]. Beijing: Science Press, 2018. (in Chinese)
    [6]
    郑健龙, 杨和平. 公路膨胀土工程[M]. 北京: 人民交通出版社, 2009.

    ZHENG Jian-long, YANG He-ping. Expansive soil engineering in highway[M]. Beijing: China Communications Press, 2009. (in Chinese)
    [7]
    LIANG C, WU Z J, LIU X F, et al. Analysis of shallow landslide mechanism of expansive soil slope under rainfall: a case study[J]. Arabian Journal of Geosciences, 2021, 14(7): 1–11.
    [8]
    杨果林, 陈子昂, 张红日, 等. 干湿循环作用下平缓型膨胀土边坡失稳破坏机制研究[J]. 中南大学学报(自然科学版), 2022, 53(1): 95–103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201003.htm

    YANG Guo-lin, CHEN Zi-ang, ZHANG Hong-ri, et al. Collapse mechanism of gentle expansive soil slope in drying and wetting cycles[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 95–103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201003.htm
    [9]
    QI Y Z, WANG Z Z, XU H Q, et al. Instability analysis of a low-angle low-expansive soil slope under seasonal wet-dry cycles and river-level variations[J]. Advances in Civil Engineering, 2020, 2020: 3479575.
    [10]
    王淳讙, 黄治峯, 赖世屏, 等. 边坡生命周期防灾监测信息整合及可视化云平台数据库建置研究[J]. 岩土工程学报, 2020, 42(1): 188–194. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001029.htm

    WANG Chwen-huan, HUANG Chih-fong, LAI Shih-ping, et al. et al. Cloud database platform of integrated visualization for life-cycle prevention and safety monitoring of slope hazards[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 188–194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001029.htm
    [11]
    杨济铭, 张红日, 陈林, 等. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析[J]. 中南大学学报(自然科学版), 2022, 53(1): 225–238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201025.htm

    YANG Ji-ming, ZHANG Hong-ri, CHEN Lin, et al. Analysis of crack morphology evolution law of expansive soil slope based on digital image correlation technology[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 225–238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201025.htm
    [12]
    杨和平, 章高峰, 郑健龙, 等. 膨胀土填筑公路路堤的物理处治技术[J]. 岩土工程学报, 2009, 31(4): 491–500. doi: 10.3321/j.issn:1000-4548.2009.04.001

    YANG He-ping, ZHANG Gao-feng, ZHENG Jian-long, et al. Physical treating techniques of highway embankments filled with expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 491–500. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.04.001
    [13]
    XIE C R, NI P P, XU M J, et al. Combined measure of geometry optimization and vegetation for expansive soil slopes[J]. Computers and Geotechnics, 2020, 123: 103588. doi: 10.1016/j.compgeo.2020.103588
    [14]
    谢彦初, 汪磊, 孙德安, 等. 基于组合赋权和聚类方法的膨胀土边坡防护工程健康诊断模型与应用[J]. 中南大学学报(自然科学版), 2022, 53(1): 258–268. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201027.htm

    XIE Yan-chu, WANG Lei, SUN De-an, et al. Health diagnosis model with combination weight and clustering method for protection works of expansive soil slope and its application[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 258–268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201027.htm
    [15]
    LI T G, KONG L W, LIU B H. The California bearing ratio and pore structure characteristics of weakly expansive soil in frozen areas[J]. Applied Sciences, 2020, 10(21): 7576. doi: 10.3390/app10217576
    [16]
    李甜果, 孔令伟, 舒荣军. 不同含水率膨胀土动剪切模量特征与原位G-γ衰减曲线确定方法[J]. 振动与冲击, 2021, 40(23): 91–99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm

    LI Tian-guo, KONG Ling-wei, SHU Rong-jun. Dynamic shear modulus characteristics of expansive soil with different moisture contents and determination method of in situ G-γ decay curve[J]. Journal of Vibration and Shock, 2021, 40(23): 91–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm
    [17]
    李甜果, 孔令伟, 王俊涛, 等. 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42(10): 2741–2754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110014.htm

    LI Tian-guo, KONG Ling-wei, WANG Jun-tao, et al. Trimodal pore structure evolution characteristics and mechanical effects of expansive soil in seasonally frozen areas based on NMR test[J]. Rock and Soil Mechanics, 2021, 42(10): 2741–2754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110014.htm
    [18]
    LI T G, KONG L W, GUO A G. The deformation and microstructure characteristics of expansive soil under freeze-thaw cycles with loads[J]. Cold Regions Science and Technology, 2021, 192: 103393. doi: 10.1016/j.coldregions.2021.103393
    [19]
    LU Y, GU K, ZHANG Y P, et al. Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms[J]. Science of the Total Environment, 2021, 794: 148608. doi: 10.1016/j.scitotenv.2021.148608
    [20]
    黎澄生, 孔令伟, 柏巍, 等. 吸湿路径SWCC曲线预测软件[简称: SWCCHys]1.0[CP]. 登记号: 2020SR1831946, 2020-12-16.

    LI Cheng-sheng, KONG Ling-wei, BAI Wei, et al. Prediction software of SWCC curve of hygroscopic path [Abbreviation: SWCCHys] 1.0[CP]. Registration number: 2020SR1831946, 2020-12-16. (in Chinese)
    [21]
    黎澄生, 孔令伟, 柏巍, 等. CT数据分析软件[简称: CT Aya]1.0[CP]. 登记号: 2020SR1843548, 2020-12-17.

    LI Cheng-sheng, KONG Ling-wei, BAI Wei, et al. CT data analysis software [Abbreviation: CTAya]1.0[CP]. Registration number: 2020SR1843548, 2020-12-17. (in Chinese)
    [22]
    LUO X Q, KONG L W, BAI W. Application of environmental friendly modifier-super hydrophobic Nano-SiO2 in enhancing the stability of expansive soil [J]. Journal of Testing and Evaluation, 2022, in press.
    [23]
    LU J F, KONG L W, LIU X Y, et al. Multihazard risk model for reliability analysis of expansive soil landslide based on T–S fuzzy logic[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8(2): 04022008. doi: 10.1061/AJRUA6.0001225
    [24]
    叶为民. 膨胀土边坡动态模糊综合评价系统V1.0[CP]. 登记号: 2021SR1461127, 2021-7-15.

    YE Wei-min. Variable Fuzzy-AHP evaluation system for expansive soil slopes V1.0[CP]. Registration number: 2021SR1461127, 2021-7-15. (in Chinese)
    [25]
    CHENG Q, TANG C S, XU D, et al. Water infiltration in a cracked soil considering effect of drying-wetting cycles[J]. Journal of Hydrology, 2021, 593: 125640. doi: 10.1016/j.jhydrol.2020.125640
    [26]
    LI Z Q, KONG Y X, FU L, et al. Model test study on deformation characteristics of a fissured expansive soil slope subjected to loading and irrigation[J]. Applied Sciences, 2021, 11(22): 10891. doi: 10.3390/app112210891
    [27]
    彭晟赟. 基于地质大数据的膨胀土裂隙分析[D]. 上海: 同济大学, 2020.

    PEN Sheng-yun. Expansion Soil Crack Analysis Based on Geological Big Data[D]. Shanghai: Tongji University, 2020. (in Chinese)
    [28]
    潘伟健. 基于点云数据的膨胀土边坡裂隙模型研究[D]. 长春: 吉林大学, 2021.

    PAN Wei-jian. Research on Model for Describing Cracks on Expansive Soil Slope Using Point Cloud Data[D]. Changchun: Jilin University, 2021. (in Chinese)
    [29]
    胡启成, 叶为民, 王琼, 等. 基于地质图像大数据的岩性识别研究[J]. 工程地质学报, 2020, 28(6): 1433–1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006030.htm

    HU Qi-cheng, YE Wei-min, WANG Qiong, et al. Recognition of lithology with big data of geological images[J]. Journal of Engineering Geology, 2020, 28(6): 1433–1440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006030.htm
    [30]
    胡启成, 叶为民. 基于深度学习模型的岩性识别软件[简称: 岩性识别软件] 1.0[CP]. 登记号: 2021SR1139780, 2021-08-03.

    HU Qi-cheng, YE Wei-min. Deep Learning Model Based Lithology Recognition Software 1.0[CP]. Resgistration Number: 2021SR1139780, 2021-08-03. (in Chinese)
    [31]
    XU J J, ZHANG H, TANG C S, et al. Automatic soil desiccation crack recognition using deep learning[J]. Géotechnique, 2022, 72(4): 337–349. doi: 10.1680/jgeot.20.P.091
    [32]
    XU J J, ZHANG H, TANG C S, et al. Automatic soil crack recognition under uneven illumination condition with the application of artificial intelligence[J]. Engineering Geology, 2022, 296: 106495. doi: 10.1016/j.enggeo.2021.106495
    [33]
    CHENG Q, TANG C S, ZHU C, et al. Drying-induced soil shrinkage and desiccation cracking monitoring with distributed optical fiber sensing technique[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8): 3959-3970. doi: 10.1007/s10064-020-01809-8
    [34]
    张硕, 刘尊言, 任金象. 安全监测平台通用数据接口软件[简称: 通用数据接口软件]V1.0[CP]. 登记号: 2020SR1779665, 2020-12-10.

    ZHANG Shuo, LIU Zun-yan, REN Jin-xiang. Safety Monitoring Platform Application Programming Interface Software [Abbreviation: APIS] V1.0[CP]. Registration number: 2020SR1779665, 2020-12-10. (in Chinese)
    [35]
    刘尊言, 夏顺盈, 张硕. 安全监测平台综合通信软件[简称: 综合通信软件]V1.0[CP]. 登记号: 2020SR1779662, 2020-12-10.

    LIU Zun-yan, XIA Shun-Ying, ZHANG Shuo. Safety Monitoring Platform Communication Software [Abbreviation: COMMS] V1.0[CP]. Registration number: 2020SR1779662, 2020-12-10. (in Chinese)
    [36]
    查甫生, 陈宗涵, 许龙, 等. 基于毛细阻滞机理的导吸式膨胀土边坡浅层控水覆盖系统: CN111636443B[P]. 2021-12-07.

    ZHA Fu-sheng, CHEN Zong-han, XU Long, et al. Shallow Water Control Covering System Based on Capillary Barrier Methods for Expansive Soil Slopes: CN111636443B[P]. 2021-12-07. (in Chinese)
    [37]
    查甫生, 胡盛涛, 孙献国, 等. 带毛细抽吸结构的膨胀土边坡浅-表层控水防护覆盖系统: CN112663630A[P]. 2021-04-16.

    ZHA Fu-sheng, HU Sheng-tao, SUN Xian-guo, et al. Shallow-Surface Water Control Covering System with Capillary Suction Conformation for Expansive Soil Slopes: CN112663630A[P]. 2021-04-16. (in Chinese)
    [38]
    查甫生, 潘俊, 康博, 等. 一种柔性钙基材料改性包边修复膨胀土边坡的方法: CN112663590B[P]. 2021-11-23.

    ZHA Fu-sheng, PAN Jun, KANG Bo, et al. A Method for Repairing Expansive Soil Slope with Modified Edge Wrapping of Flexible Calcium Based Materials: CN112663590B[P]. 2021-11-23. (in Chinese)
    [39]
    TIAN Y F, LI Z Q, WANG S J, et al. Application of MICP in water stability and hydraulic erosion control of phosphogypsum material in slope[J]. Applied Sciences, 2022, 12(4): 1783. doi: 10.3390/app12041783
    [40]
    李志清, 周应新, 侯建伟, 等. 一种使用磷石膏与微生物改良膨胀土路堤的设计施工方法: CN111424485B[P]. 2021-03-02.

    LI Zhi-qing, ZHOU Ying-xin, HOU Wei-jian, et al. Design and Construction Method for Expansive Soil Embankment Modified by Phosphogypsum and Microorganism: CN111424485B[P]. 2021-03-02. (in Chinese)
    [41]
    LI Z Q. Construction Method for Ecologically Protecting Expansive Soil Slope by Combining Phosphogypsum with Microbial Mineralization[P]. USA Patent. US10913894B1. 授权日: 2021-02-09. ((in Chinese)).
    [42]
    王琼, 李丹, 叶为民, 等. 一种新型压密注浆土钉及其拉拔试验装置: CN111794293A[P]. 20201020.

    WANG Qiong, LI Dan, YE Wei-min, et al. A New Compaction Grouting Soil Nail and Its Pull-Out Test Device: CN111794293A[P]. 2020-10-20. (in Chinese)
    [43]
    许辉, 王琼, 王楠, 等. 膨胀土裂隙图像数值化信息提取系统V1.0[CP]. 登记号: 2022SR0206121, 2021-11-30.

    XU Hui, WANG Qiong, WANG Nan, et al. Digital information extraction system of expansive soil crack image[CP]. Registration number: 2022SR0206121, 2021-11-30. (in Chinese)
    [44]
    贺伟明, 石胜伟, 蔡强, 等. 考虑膨胀作用对抗剪强度影响的膨胀土边坡稳定性分析[J]. 岩石力学与工程学报. (录用待刊)

    HE Wei-ming, SHI Sheng-wei, CAI Qiang, et al. Stability analysis of expansive soil slope considering the influence of swelling on shear strength [J]. Chinese Journal of Rock Mechanics and Engineering. (in Chinese)
    [45]
    张冬梅. 防护工程健康状态诊断系统软件1.0[CP]. 登记号: 2022SR0100998, 2022-01-08.

    ZHANG Dong-mei. Protection engineering health status diagnosis software 1.0[CP]. Registration number: 2022SR0100998, 2022-01-08. (in Chinese)
    [46]
    ZHOU Y T, SHI S W, CAI Q. A model test and the ultimate capacity analysis of multi-underreamed anchors in silty clay. [J]. Soil Mechanics and Foundation Engineering, 2022. (in press)
    [47]
    杨栋, 石胜伟, 蔡强, 等. 一种膨胀土边坡防护的压力型氮气锚杆结构及适用方法: 中国专利, 202011516483.2[P]. 2021-12-07.

    YANG Dong, SHI Sheng-wei, CAI Qiang, et al. A Pressure Nitrogen Bolt Structure for Expansive Soil Slope Protection and Its Applicable Method: CN202011516483.2[P]. 2021-12-07. (in Chinese)
    [48]
    贺伟明, 石胜伟, 蔡强, 等. 双掺氯乙烯-乙烯-乙烯醚乳液与橡胶颗粒改性水泥砂浆的性能研究[J]. 混凝土. (录用待刊)

    HE Wei-ming, SHI Sheng-wei, CAI Qiang, et al. Study on properties of cement mortar modified by vinyl chloride-ethylene-vinyl ether emulsion and rubber particles[J]. Concrete. (in press) (in Chinese)
  • Cited by

    Periodical cited type(18)

    1. 欧阳淼,张红日,邓人睿,王桂尧,肖杰,赵亚. 黄原胶生物聚合物改良膨胀土裂隙演化规律研究. 岩土工程学报. 2025(01): 106-114 . 本站查看
    2. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    3. 田丽霞,周黎月,张丁宁. 红黏土滑坡治理工程中排水反复直接剪切试验研究. 工程勘察. 2024(07): 9-14 .
    4. 李世明,胡卫军,韩琳琳. 锚杆支护形式对高陡公路边坡稳定性的影响研究. 西部交通科技. 2024(05): 34-37 .
    5. 冀春杰,胡贺松,崔皓,简思敏,蒋明烨,韦童. 典型特殊土处理技术研究进展. 广州建筑. 2024(04): 105-108 .
    6. 胡江,李星. 深挖方膨胀土边坡时空变形特征分析. 岩土力学. 2024(10): 3071-3080 .
    7. 时小波,崔广炎,牟超,温野,谢峰,付啸阳. 高寒区上覆岩石层膨胀土失稳边坡治理方法研究. 中外公路. 2024(05): 17-24+38 .
    8. 王楠,王琼,叶为民,陈永贵,许龙,苏薇. 微生物加固技术研究进展. 水文地质工程地质. 2024(05): 231-244 .
    9. 蒋晗,胡江,李星. 基于聚类分析的膨胀土渠坡加固前后变形特征分析. 人民黄河. 2024(12): 144-148 .
    10. 胡宏伟. 引江济淮沿线膨胀土分布规律及工程特性相关性分析. 江淮水利科技. 2024(05): 1-6+20 .
    11. 高鑫,张宇航,李国林,田梦贺,刘伟超. 土工袋包裹膨胀土复合体抗渗与变形特性研究. 甘肃科学学报. 2024(06): 58-63 .
    12. 梁兴. 高边坡膨胀土在水利水运工程中处理措施研究. 珠江水运. 2023(04): 61-63 .
    13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 .
    14. 蒙礼超. 山区高速公路路基边坡防护方案比选分析. 西部交通科技. 2023(02): 58-60 .
    15. 孙超. 粉煤灰掺量对膨胀土抗剪强度的改性影响. 水利建设与管理. 2023(05): 25-30 .
    16. 吴祖成,田飞,李茂军. 滑坡灾害特征及其治理技术研究——以驻马店市乐山林场为例. 能源与环保. 2023(07): 105-111 .
    17. 曹正波,李建朋. 上硬下软型膨胀土路堑滑塌成因与处治. 公路. 2023(12): 39-43 .
    18. 张梦涵,魏进,卞海丁. 基于机器学习的边坡稳定性分析方法——以国内618个边坡为例. 地球科学与环境学报. 2022(06): 1083-1095 .

    Other cited types(11)

Catalog

    Article views (448) PDF downloads (180) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return