• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

填埋场好氧修复三维沉降变形特性及加速稳定化分析

冯世进, 白真白, 郑奇腾

冯世进, 白真白, 郑奇腾. 填埋场好氧修复三维沉降变形特性及加速稳定化分析[J]. 岩土工程学报, 2021, 43(11): 1976-1985. DOI: 10.11779/CJGE202111003
引用本文: 冯世进, 白真白, 郑奇腾. 填埋场好氧修复三维沉降变形特性及加速稳定化分析[J]. 岩土工程学报, 2021, 43(11): 1976-1985. DOI: 10.11779/CJGE202111003
FENG Shi-jin, BAI Zhen-bai, ZHENG Qi-teng. Three-dimensional settlement characteristics and accelerated stabilization of landfills under aerobic remediation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1976-1985. DOI: 10.11779/CJGE202111003
Citation: FENG Shi-jin, BAI Zhen-bai, ZHENG Qi-teng. Three-dimensional settlement characteristics and accelerated stabilization of landfills under aerobic remediation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1976-1985. DOI: 10.11779/CJGE202111003

填埋场好氧修复三维沉降变形特性及加速稳定化分析  English Version

基金项目: 

国家自然科学基金杰出青年基金项目 41725012

国家自然科学基金重点基金项目 41931289

上海市科委社发领域项目 20dz1203402

详细信息
    作者简介:

    冯世进(1978— ),男,博士,教授,博士生导师,主要从事环境岩土工程、土动力学的教学与科研工作。E-mail:fsjgly@tongji.edu.cn

  • 中图分类号: TU43

Three-dimensional settlement characteristics and accelerated stabilization of landfills under aerobic remediation

  • 摘要: 沉降变形是重要的填埋场稳定化指标,对于稳定化进程的评估具有重要意义,然而,由于氧浓度分布的不均匀,曝气作用下填埋场内生化降解和沉降变形高度耦合且极为复杂,已有厌氧填埋场沉降模型难以适用。建立了考虑厌氧-好氧生化降解、液气运移、多组分扩散和弹塑性-降解骨架变形的填埋场多场耦合三维模型,采用有限体积法和开源计算平台OpenFoam进行编程求解,揭示了垃圾填埋场好氧修复的沉降变形特性。结果表明,曝气易导致填埋场产生显著的不均匀沉降和垃圾体-曝气井相对位移,可高达约0.7 m(模型为10 m×10 m×高15 m),最大不均匀沉降出现在曝气中间阶段;依据填埋场土地高度利用的国家标准,好氧修复可降低88%的后期维护运营时间,建议采用填埋场90%降解度作为好氧修复的终止标准,以保证修复工后沉降速率满足标准。
    Abstract: The settlement is an important index for evaluating the stabilization of a landfill. However, the settlement of an aerated landfill is extremely complex and highly coupled with waste biodegradation due to non-homogeneous distribution of oxygen. Thus, the traditional models for settlement of anaerobic landfills are not applicable to aerobic ones. A three-dimensional multi-field couped model for landfills is established considering anaerobic-aerobic biodegradation, liquid-gas migration, multi-component diffusion and elastic-plastic-degradation skeleton deformation. The finite volume method and the open source computing platform OpenFoam are used to solve the model, and the settlement and deformation characteristics of an aerobic landfill are revealed. The results show that the aeration can easily induce significant uneven settlement and relative displacement of waste-aeration well, e.g., reaching up to 0.7 m for a 10 m×10 m×15 m model in this paper, and the largest uneven settlement occurs at the intermediate stage of aeration. According to the China's national standard of highly utilizing landfills, the aerobic remediation can reduce the post-maintenance time of landfills by 88%, and a termination condition of 90% degradation degree is suggested for aerobic remediation of landfills to satisfy the criteria in terms of post-aeration settlement rate.
  • 西安地裂缝是20世纪50年代后期发现的,引起了人们的关注。1976年唐山地震后,西安地裂缝显著活动引起建筑物不均匀沉降而破坏。地质、工程界的研究,明确了西安地裂缝是地质构造运动而产生的认识[1-2]。20世纪80年代以来,进一步开展了西安地裂缝的原因、分布及活动规律的调查、监测研究,初步确定了其成因受南侧临潼-长安大断裂控制[2-5]。近年来,西安地裂缝活动加剧不仅受到周围地区地震作用影响,且与西安地区过量开采承压水产生相关。通过对西安地裂缝造成现有建(构)筑物破坏特征分析,地裂缝致灾机理是地裂缝上盘下沉,从而引起不均匀沉降、拉裂和错动位移,进而导致建筑物、地下洞室裂开和坍塌,路基、管道错动和断裂。同时,地表水沿地裂缝入渗和潜蚀,引起黄土湿陷不均匀沉降变形,对建(构)筑物造成二次破坏。西安地裂缝带来的危害性不仅体现在对于各类建(构)筑物生产建设的直接破坏,还会对工程场地土的性质与工程稳定性产生严重影响。从而严重地限制了建筑场地的使用,影响城市建设的合理布局[6-7, 9-10]

    对于这一特殊地质环境下的地铁隧道,特别是横穿地裂缝的隧道结构,衬砌结构沿纵向将承受比正常情况下大得多的附加应力和变形。附加作用表现为:①在地裂缝附近,上盘地层错动下沉可能脱空衬砌结构仰拱基底,或减小基底对衬砌结构的支撑作用,导致隧道衬砌发生剪切破坏;②地裂缝下盘对衬砌结构的约束作用,导致地裂缝附近衬砌结构承受拉应力;③上盘土体向下运动,引起该侧隧道结构变形,相当于弹性地基梁一端发生沉降的弯曲变形;④衬砌结构受地裂缝两侧土体的相运动,对隧道衬砌施加向下的作用力,引起隧道结构出现拉裂变形[6, 8]。地裂缝隧道设计了衬砌结构位移的预留空间[11]。由此可见,未采取措施的地裂缝隧道可能引起衬砌结构强度破坏和防水失效,不能保证正常运营。

    为了揭示地裂缝隧道的力学特征和变形形态,需要分析地裂缝的产状和运动特征,以及地裂缝活动对衬砌结构的作用等。

    西安地裂缝包括有显露地裂缝与隐伏地裂缝,是典型的黄土地区地质灾害现象。目前已发现14条地裂缝总延伸长度约103 km,分布在150 km2的黄土梁洼地貌范围内,单条地裂缝出露长度在2~12 km之间。其主要位于渭河断裂以南,临潼—长安断裂以北,向东西两侧(浐河至皂河)延伸。西安地裂缝由主裂缝、次生地裂缝和分枝地裂缝三部分组成,总体走向近似平行于临潼—长安断裂;总体倾向近似与临潼-长安断裂倾向相反,倾角约80°。西安地裂缝延伸长度可达数公里至十数公里,空间上呈不等间距平行排列,其分布范围内的地表由北向南呈逐渐升高的梁-洼地貌景观,如图1,2所示[5]

    图  1  西安地裂缝分布平面图[8]
    Figure  1.  Distribution of ground fissures in Xi'an[8]
    图  2  西安地裂缝南北走向地层剖面图
    Figure  2.  Stratigraphic profile of north-south direction of ground fissures in Xi'an

    地裂缝大都发育在“黄土梁”地貌的南侧陡坡上这一特定地貌构造部位。其垂直位移单向累积,断距随深度的增大而增大。地裂缝发育剖面如图3所示。

    图  3  西安地裂缝引起的地层错位示意图
    Figure  3.  Stratum dislocation caused by ground fissures in Xi'an

    西安地裂缝的发展经历了从发生阶段发展至剧烈活动到成熟阶段,随后缓慢变形直至稳定这一过程。地裂缝的最大位移估算如表1所示。

    表  1  西安地裂缝最大垂直预估位移量[8]
    Table  1.  Maximum predicted vertical displacements of ground fissures (mm)
    地裂缝编号A(预估极限值)A×1.5(设计值)地裂缝编号A(预估极限值)A×1.5(设计值)
    f2200300f8100150
    f3150225f10150225
    f5300450f11300450
    f6/f6'300(200)450(300)f9/f9'300(250)450(375)
    f7300450f12100150
    下载: 导出CSV 
    | 显示表格

    地铁隧道穿越地裂缝不可避免,应遵从以下原则:以结构措施适应变形为主前提下,在地裂缝处理段需须对结构进行分段预留必要的变形空间适应地裂缝的变形;加强断面结构抵抗变形对结构的破坏;变形缝处在结构发生变形时应当能够保持防水的效果。地裂缝活动主变形区范围根据地裂缝活动引起附近地层的活动变形范围确定为:上盘0~6 m,下盘0~4 m;微变形区上盘6~20 m,下盘4~15 m。上盘变形影响范围大于下盘。隧道衬砌结构为了适应地裂缝活动的变形应在地裂缝处应设置变形缝[6, 8]。如4, 5所示。

    图  4  变形缝设置示意图
    Figure  4.  Schematic diagram of setting of deformation joints
    图  5  地裂缝隧道纵坡调整示意图
    Figure  5.  Schematic diagram of longitudinal slope adjustment of tunnel with ground fissures

    西安地铁二号线地裂缝区段隧道一般采用马蹄形隧道断面,以正交穿越地裂缝的地铁2号线为分析对象,地裂缝区间隧道采用CRD开挖方法,最大断面净空宽为8.3 m,高为8.45 m;初衬为C25喷射混凝土,厚30 cm;二衬为C30模注钢筋混凝土,厚50 cm。衬砌结构沿纵向每10 m或15 m预设10 cm宽的变形缝,充填密封防渗材料封闭变形缝。以便衬砌结构适应地裂缝上下盘土体相对运动,避免衬砌结构附加拉应力,防止基底出现脱空现象。并且在衬砌结构端部局部加厚以便适应可能出现的应力集中现象。

    西安地铁地裂缝隧道通过FLAC-3D有限差分软件建立了计算模型。计算模型隧道埋深为10 m,横断面内水平向宽度为80 m,竖向高度为60 m,轴向长度为200 m。模拟地层埋深0~7.5 m为晚更新世风积黄土,埋深7.5~25.5 m为晚更新世粉质黏土及古土壤层,埋深25.5~30.5 m为中更新世黄土及古土壤层,以及埋深30.5 m以下为中更新世粉质黏土。地裂缝采用库仑摩擦接触面模拟;应力应变关系采用莫尔-库仑屈服条件的弹塑性模型描述;地层及二次衬砌结构采用实体单元模拟;初期衬砌结构采用壳单元模拟。

    在地裂缝活动导致自由场地地面不均匀沉降如图6所示条件下,衬砌结构错动位移如图7,8图9所示。衬砌结构变形缝最大挤压变形为3.6 cm,位于地裂缝处变形缝两侧衬砌拱底;最大张拉变形为5.7 cm,位于上盘内邻近地裂缝衬砌结构变形缝的拱底处。衬砌结构变形缝预留10 cm,满足最大挤压变形的要求。衬砌结构大、小主应力如图10,11所示。大主应力受拉的集中区域主要分布在衬砌结构内侧腰部,最大值为2.02 MPa;小主应力受拉的区域也分布于此。地裂缝两侧衬砌结构内侧腰部受拉,应进行加强处理。隧道衬砌结构采用C30混凝土,其抗压强度为30 MPa,抗拉强度为2.01 MPa,添加钢纤维可满足受拉的强度要求。

    图  6  地裂缝自由场地地表沉降
    Figure  6.  Surface settlements of free site under acting ground fissures
    图  7  隧道衬砌拱顶纵轴线沉降分布曲线
    Figure  7.  Distribution of settlement at arch of lining structure and on surface
    图  8  隧道衬砌结构顶、底水平位移分布曲线
    Figure  8.  Distribution of horizontal displacement at vault and arch bottom of lining structure along axial direction of tunnel
    图  9  地裂缝附近隧道衬砌结构变位示意图
    Figure  9.  Differential settlements of segmented lining near ground fissures
    图  10  衬砌结构大主应力
    Figure  10.  Major principal stresses of linings
    图  11  衬砌结构小主应力
    Figure  11.  Minor principal stresses of linings

    在地裂缝区间段隧道运行100 a后,地裂缝会导致隧道下沉500 mm。为保证隧道具有列车运行的空间,在隧道截面扩构段,二衬结构加大截面厚度及增加配筋,提高纵向分布筋直径及间距的方法抵抗扭转、剪切对结构的影响。地裂缝隧道段的初期支护和内衬之间增设沥青混凝土复合衬砌,在初期支护和二次衬砌之间形成夹层,利用沥青混凝土特有的延展性、流变性,密封衬砌结构变形缝。随着地裂缝活动,沥青混凝土在围岩压力作用下沿侧向产生挤出变形,从围岩压力大的部位向围岩压力小的部位流动,使得围岩压力趋于均匀化。当地裂缝活动导致衬砌结构错动变形时,沥青混凝土易产生流变剪切变形,适应衬砌结构变形缝的变化,可发挥其防渗能力。沥青混凝土变形缝构造与变形模型试验结果如图12,13所示。

    图  12  加筋沥青混凝土防渗变形缝结构
    Figure  12.  Scheme of reinforced asphalt concrete and anti-seepage deformation joint structure
    图  13  沥青混凝土变形模型试验
    Figure  13.  Model tests on deformation of asphalt concrete

    (1)西安临潼—长安断裂带是地裂缝产生的构造活动,过量开采承压水产生不均匀沉降是地裂缝发展的附加作用。准确预测地裂缝的位移量,是地裂缝隧道结构设计的重要依据。

    (2)西安地铁二号线地裂缝影响段65 m设变形缝,在地裂缝影响范围内,主变形段通常占地裂缝80%~90%的总垂直位移量,是主要的设防区,按10 m进行隧道分段。微变形段垂直位移量仅占10%~20%的总位移量,按10~15 m进行隧道分段。

    (3)地裂缝隧道结构应采取衬砌结构适应地裂缝变形的原则。在地裂缝处理段需对结构进行分段,预留必要的变形空间作为变形缝以适应地裂缝的变形。加强变形缝断面的结构,以便满足抵抗变形对结构破坏的要求。

    (4)衬砌结构内侧拱腰分布拉应力集中区,需提高衬砌结构混凝土的抗拉强度。采取加筋沥青混凝土复合衬砌及沥青玛蹄脂填充变形缝处理,可改善衬砌结构受力条件,密封衬砌结构变形缝,保持防水的效果。

  • 图  1   填埋场耦合模型求解示意图

    Figure  1.   Solution procedures of proposed coupled model for landfills

    图  2   填埋场好氧修复的几何示意图

    Figure  2.   Schematic of aerobic remediation of landfill

    图  3   曝气条件下填埋场的沉降变形空间分布

    Figure  3.   Spatial distribution of deformation in landfill under aeration

    图  4   好氧修复过程中垃圾体沉降变形网格示意图

    Figure  4.   Grid diagram of waste deformation under aeration

    图  5   不均匀沉降量随时间的变化规律

    Figure  5.   Variation of uneven settlement over time

    图  6   曝气井-垃圾相对位移随时间的变化

    Figure  6.   Variation of relative displacement of well-waste over time

    图  7   曝气压力对井周相对沉降量的影响

    Figure  7.   Effects of aeration pressure on relative settlement of well

    图  8   氧浓度和有机物降解度Dd的空间分布

    Figure  8.   Distribution of O2 concentration and degradation degree Dd

    图  9   两种降解模式下填埋场沉降速率

    Figure  9.   Settlement rates of landfill under two degradation modes

    图  10   好氧修复后地表沉降随时间的变化

    Figure  10.   Change of surface subsidence over time after aeration

    表  1   垃圾体好氧反应多场耦合模型的核心变量

    Table  1   Key variables of coupled model for anaerobic-aerobic landfill

    核心变量符号单位
    液相和气相压力pw, pgPa
    气相CH4,CO2质量分数ygCH4, ygCO2
    气相O2,N2质量分数ygO2, ygN2
    骨架位移增量dum
    下载: 导出CSV

    表  2   填埋场好氧修复的边界条件

    Table  2   Boundary conditions of aerobic remediaton of landfill

    边界PgPwyCH4 g,yCO2 gyO2 gyN2 gdu
    顶部0 Pa不透水零梯度零梯度零梯度应力0 Pa
    底部不透气自由排水零梯度零梯度零梯度固定
    曝气井6 kPa不透水0%26.6%73.4%固定
    回收井0 Pa不透水零梯度零梯度零梯度固定
    四周  对称边界  滑移
    下载: 导出CSV

    表  3   垃圾生化反应和甲烷氧化参数

    Table  3   Waste biodegradation and CH4 oxidation parameters

    参数单位
    好氧和厌氧降解常数km,A, km,Nd-10.1, 0.01
    好氧和厌氧生长率半饱和常数ks,A, ks,Nkg/m3100
    好氧反应氧气半饱和常数KO20.07
    初始好氧菌和厌氧菌浓度XA,0, XN,0kg/m30.15
    最大CH4消耗速率Vmaxkg/m3/s0.6×10-5
    甲烷氧化O2半饱和常数DO20.012
    甲烷氧化CH4半饱和常数DCH40.0066
    下载: 导出CSV
  • [1] 孔宪京, 孙秀丽. 城市固体废弃物沉降模型研究现状及其进展[J]. 大连理工大学学报, 2006, 46(4): 615-624. doi: 10.3321/j.issn:1000-8608.2006.04.029

    KONG Xian-jing, SUN Xiu-li. Current situation and advance of research on settlement model for municipal solid wastes[J]. Journal of Dalian University of Technology, 2006, 46(4): 615-624. (in Chinese) doi: 10.3321/j.issn:1000-8608.2006.04.029

    [2] 李秀兰, 刘东燕, 罗云菊. 山地城市垃圾填埋场渗滤液环境问题的探讨[J]. 地下空间与工程学报, 2006, 2(5): 855-858. doi: 10.3969/j.issn.1673-0836.2006.05.035

    LI Xiu-lan, LIU Dong-yan, LUO Yun-ju. Discussion on the environmental problems from leachate of solid waste in mountainous city[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(5): 855-858. (in Chinese) doi: 10.3969/j.issn.1673-0836.2006.05.035

    [3]

    NIKOLAOU A, GIANNIS A, GIDARAKOS E. Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors[J]. Environmental Technology, 2010, 31(12): 1381-1389. doi: 10.1080/09593331003743104

    [4]

    KO J H, MA Z Y, JIN X, et al. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills[J]. Journal of the Air & Waste Management Association, 2016, 66(12): 1245-1256.

    [5]

    RAGA R, COSSU R. Landfill aeration in the framework of a reclamation project in Northern Italy[J]. Waste Management, 2014, 34(3): 683-691. doi: 10.1016/j.wasman.2013.12.011

    [6]

    HEYER K U, HUPE K, RITZKOWSKI M, et al. Pollutant release and pollutant reduction - Impact of the aeration of landfills[J]. Waste Management, 2005, 25(4): 353-359. doi: 10.1016/j.wasman.2005.02.007

    [7]

    HOSSAIN M S, GABR M A, BARLAZ M A. Relationship of compressibility parameters to municipal solid waste decomposition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1151-1158. doi: 10.1061/(ASCE)1090-0241(2003)129:12(1151)

    [8]

    MARQUES A C M, FILZ G M, VILAR O M. Composite compressibility model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 372-378. doi: 10.1061/(ASCE)1090-0241(2003)129:4(372)

    [9]

    BEAVEN R, POWRIE W. Determination of the hydrogeological and geotechnical properties of refuse in relation to sustainable landfilling[C]//Proceedings of the Annual Madison Waste Conference, 1996, Madison.

    [10]

    BAREITHER C A, BENSON C H, EDIL T B. Compression behavior of municipal solid waste: immediate compression[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(9): 1047-1062. doi: 10.1061/(ASCE)GT.1943-5606.0000672

    [11]

    BAREITHER C A, BENSON C H, EDIL T B. Compression of municipal solid waste in bioreactor landfills: mechanical creep and biocompression[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(7): 1007-1021. doi: 10.1061/(ASCE)GT.1943-5606.0000835

    [12]

    SIVAKUMAR BABU G L, REDDY K R, CHOUKSEY S K. Constitutive model for municipal solid waste incorporating mechanical creep and biodegradation-induced compression[J]. Waste Management, 2010, 30(1): 11-22. doi: 10.1016/j.wasman.2009.09.005

    [13]

    OLIVIER F, GOURC J P. Hydro-mechanical behavior of Municipal Solid Waste subject to leachate recirculation in a large-scale compression reactor cell[J]. Waste Management, 2007, 27(1): 44-58. doi: 10.1016/j.wasman.2006.01.025

    [14]

    MACHADO S L, CARVALHO M F, VILAR O M. Constitutive model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(11): 940-951. doi: 10.1061/(ASCE)1090-0241(2002)128:11(940)

    [15]

    MCDOUGALL J. A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste[J]. Computers and Geotechnics, 2007, 34(4): 229-246. doi: 10.1016/j.compgeo.2007.02.004

    [16]

    SIVAKUMAR BABU G L, REDDY K R, CHOUSKEY S K, et al. Prediction of long-term municipal solid waste landfill settlement using constitutive model[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2010, 14(2): 139-150. doi: 10.1061/(ASCE)HZ.1944-8376.0000024

    [17] 柯瀚, 董鼎, 陈云敏, 等. 考虑剪缩性的城市固体废弃物非线性弹性模型[J]. 浙江大学学报(工学版), 2017, 51(11): 2158-2164. doi: 10.3785/j.issn.1008-973X.2017.11.009

    KE Han, DONG Ding, CHEN Yun-min, et al. Nonlinear elastic model for municipal solid waste considering dilatancy effect[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(11): 2158-2164. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.11.009

    [18]

    KIM S Y, TOJO Y, MATSUTO T. Compartment model of aerobic and anaerobic biodegradation in a municipal solid waste landfill[J]. Waste Management & Research, 2007, 25(6): 524-537.

    [19]

    THEMELIS N J, KIM Y H. Material and energy balances in a large-scale aerobic bioconversion cell[J]. Waste Management & Research, 2002, 20(3): 234-242.

    [20]

    ABICHOU T, MAHIEU K, CHANTON J, et al. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions[J]. Waste Management, 2011, 31(5): 978-986. doi: 10.1016/j.wasman.2010.12.002

    [21]

    SPOKAS K, BOGNER J, CHANTON J. A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4): G04017.

    [22] 郭亚丽, 赵由才, 徐迪民. 上海老港生活垃圾填埋场陈垃圾的基本特性研究[J]. 上海环境科学, 2002, 21(11): 669-671.

    GUO Ya-li, ZHAO You-cai, XU Di-ming. Study on basic characteristics of aged refuse at Shanghai Laogang landfill[J]. Shanghai Environmental Sciences, 2002, 21(11): 669-671. (in Chinese)

  • 期刊类型引用(4)

    1. 史治文. 西安地铁八号线地裂缝隧道暗挖施工技术与沉降控制措施研究. 结构工程师. 2024(05): 137-142 . 百度学术
    2. 秦璐. 考虑地裂缝影响的盾构隧道变形破坏机制试验研究. 九江学院学报(自然科学版). 2023(03): 47-51 . 百度学术
    3. 苗晨阳,黄强兵,苟玉轩,滕宏泉,贾少春. 地裂缝场地盾构隧道下穿施工对既有管廊的影响研究. 现代隧道技术. 2022(03): 155-165+171 . 百度学术
    4. 赵阳川. 某铁路隧道衬砌裂缝对结构安全的影响分析. 工程建设与设计. 2022(17): 97-101 . 百度学术

    其他类型引用(2)

图(10)  /  表(3)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  23
  • PDF下载量:  151
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-03-28
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2021-10-31

目录

/

返回文章
返回