• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Shi-jin, BAI Zhen-bai, ZHENG Qi-teng. Three-dimensional settlement characteristics and accelerated stabilization of landfills under aerobic remediation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1976-1985. DOI: 10.11779/CJGE202111003
Citation: FENG Shi-jin, BAI Zhen-bai, ZHENG Qi-teng. Three-dimensional settlement characteristics and accelerated stabilization of landfills under aerobic remediation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1976-1985. DOI: 10.11779/CJGE202111003

Three-dimensional settlement characteristics and accelerated stabilization of landfills under aerobic remediation

More Information
  • Received Date: March 28, 2021
  • Available Online: December 01, 2022
  • The settlement is an important index for evaluating the stabilization of a landfill. However, the settlement of an aerated landfill is extremely complex and highly coupled with waste biodegradation due to non-homogeneous distribution of oxygen. Thus, the traditional models for settlement of anaerobic landfills are not applicable to aerobic ones. A three-dimensional multi-field couped model for landfills is established considering anaerobic-aerobic biodegradation, liquid-gas migration, multi-component diffusion and elastic-plastic-degradation skeleton deformation. The finite volume method and the open source computing platform OpenFoam are used to solve the model, and the settlement and deformation characteristics of an aerobic landfill are revealed. The results show that the aeration can easily induce significant uneven settlement and relative displacement of waste-aeration well, e.g., reaching up to 0.7 m for a 10 m×10 m×15 m model in this paper, and the largest uneven settlement occurs at the intermediate stage of aeration. According to the China's national standard of highly utilizing landfills, the aerobic remediation can reduce the post-maintenance time of landfills by 88%, and a termination condition of 90% degradation degree is suggested for aerobic remediation of landfills to satisfy the criteria in terms of post-aeration settlement rate.
  • [1]
    孔宪京, 孙秀丽. 城市固体废弃物沉降模型研究现状及其进展[J]. 大连理工大学学报, 2006, 46(4): 615-624. doi: 10.3321/j.issn:1000-8608.2006.04.029

    KONG Xian-jing, SUN Xiu-li. Current situation and advance of research on settlement model for municipal solid wastes[J]. Journal of Dalian University of Technology, 2006, 46(4): 615-624. (in Chinese) doi: 10.3321/j.issn:1000-8608.2006.04.029
    [2]
    李秀兰, 刘东燕, 罗云菊. 山地城市垃圾填埋场渗滤液环境问题的探讨[J]. 地下空间与工程学报, 2006, 2(5): 855-858. doi: 10.3969/j.issn.1673-0836.2006.05.035

    LI Xiu-lan, LIU Dong-yan, LUO Yun-ju. Discussion on the environmental problems from leachate of solid waste in mountainous city[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(5): 855-858. (in Chinese) doi: 10.3969/j.issn.1673-0836.2006.05.035
    [3]
    NIKOLAOU A, GIANNIS A, GIDARAKOS E. Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors[J]. Environmental Technology, 2010, 31(12): 1381-1389. doi: 10.1080/09593331003743104
    [4]
    KO J H, MA Z Y, JIN X, et al. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills[J]. Journal of the Air & Waste Management Association, 2016, 66(12): 1245-1256.
    [5]
    RAGA R, COSSU R. Landfill aeration in the framework of a reclamation project in Northern Italy[J]. Waste Management, 2014, 34(3): 683-691. doi: 10.1016/j.wasman.2013.12.011
    [6]
    HEYER K U, HUPE K, RITZKOWSKI M, et al. Pollutant release and pollutant reduction - Impact of the aeration of landfills[J]. Waste Management, 2005, 25(4): 353-359. doi: 10.1016/j.wasman.2005.02.007
    [7]
    HOSSAIN M S, GABR M A, BARLAZ M A. Relationship of compressibility parameters to municipal solid waste decomposition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1151-1158. doi: 10.1061/(ASCE)1090-0241(2003)129:12(1151)
    [8]
    MARQUES A C M, FILZ G M, VILAR O M. Composite compressibility model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 372-378. doi: 10.1061/(ASCE)1090-0241(2003)129:4(372)
    [9]
    BEAVEN R, POWRIE W. Determination of the hydrogeological and geotechnical properties of refuse in relation to sustainable landfilling[C]//Proceedings of the Annual Madison Waste Conference, 1996, Madison.
    [10]
    BAREITHER C A, BENSON C H, EDIL T B. Compression behavior of municipal solid waste: immediate compression[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(9): 1047-1062. doi: 10.1061/(ASCE)GT.1943-5606.0000672
    [11]
    BAREITHER C A, BENSON C H, EDIL T B. Compression of municipal solid waste in bioreactor landfills: mechanical creep and biocompression[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(7): 1007-1021. doi: 10.1061/(ASCE)GT.1943-5606.0000835
    [12]
    SIVAKUMAR BABU G L, REDDY K R, CHOUKSEY S K. Constitutive model for municipal solid waste incorporating mechanical creep and biodegradation-induced compression[J]. Waste Management, 2010, 30(1): 11-22. doi: 10.1016/j.wasman.2009.09.005
    [13]
    OLIVIER F, GOURC J P. Hydro-mechanical behavior of Municipal Solid Waste subject to leachate recirculation in a large-scale compression reactor cell[J]. Waste Management, 2007, 27(1): 44-58. doi: 10.1016/j.wasman.2006.01.025
    [14]
    MACHADO S L, CARVALHO M F, VILAR O M. Constitutive model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(11): 940-951. doi: 10.1061/(ASCE)1090-0241(2002)128:11(940)
    [15]
    MCDOUGALL J. A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste[J]. Computers and Geotechnics, 2007, 34(4): 229-246. doi: 10.1016/j.compgeo.2007.02.004
    [16]
    SIVAKUMAR BABU G L, REDDY K R, CHOUSKEY S K, et al. Prediction of long-term municipal solid waste landfill settlement using constitutive model[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2010, 14(2): 139-150. doi: 10.1061/(ASCE)HZ.1944-8376.0000024
    [17]
    柯瀚, 董鼎, 陈云敏, 等. 考虑剪缩性的城市固体废弃物非线性弹性模型[J]. 浙江大学学报(工学版), 2017, 51(11): 2158-2164. doi: 10.3785/j.issn.1008-973X.2017.11.009

    KE Han, DONG Ding, CHEN Yun-min, et al. Nonlinear elastic model for municipal solid waste considering dilatancy effect[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(11): 2158-2164. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.11.009
    [18]
    KIM S Y, TOJO Y, MATSUTO T. Compartment model of aerobic and anaerobic biodegradation in a municipal solid waste landfill[J]. Waste Management & Research, 2007, 25(6): 524-537.
    [19]
    THEMELIS N J, KIM Y H. Material and energy balances in a large-scale aerobic bioconversion cell[J]. Waste Management & Research, 2002, 20(3): 234-242.
    [20]
    ABICHOU T, MAHIEU K, CHANTON J, et al. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions[J]. Waste Management, 2011, 31(5): 978-986. doi: 10.1016/j.wasman.2010.12.002
    [21]
    SPOKAS K, BOGNER J, CHANTON J. A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4): G04017.
    [22]
    郭亚丽, 赵由才, 徐迪民. 上海老港生活垃圾填埋场陈垃圾的基本特性研究[J]. 上海环境科学, 2002, 21(11): 669-671.

    GUO Ya-li, ZHAO You-cai, XU Di-ming. Study on basic characteristics of aged refuse at Shanghai Laogang landfill[J]. Shanghai Environmental Sciences, 2002, 21(11): 669-671. (in Chinese)

Catalog

    Article views (262) PDF downloads (151) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return