New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils
-
摘要: 橡皮膜顺变效应对砾性土动三轴液化试验结果影响显著,采用试样注水补偿是消除橡皮膜顺变效应的基本手段。论证现有补偿方法的原理与技术缺欠,提出橡皮膜顺变性补偿新原理及新方法。通过多种含砾量砾性土大尺寸动三轴液化试验,结合橡皮膜嵌入体积测量,以能够考虑橡皮膜顺变性计算修正后孔压发展结果为参照,对新补偿方法可行性与可靠性进行对比验证。研究表明,现有补偿原理仅以动力导致橡皮膜回弹水作为总补水体积,将导致补偿不足,新补偿原理考虑了补偿过程中橡皮膜分流作用,更科学合理;在不同含砾量、不同振次条件下动三轴液化试验中,新补偿方法所得结果与理论计算相符,变化规律一致;相比现有补偿方法,新方法在单次补偿阶段无需反复补水和多回合逼近,可操作性明显增强,补偿效果明显占优。新方法操作简捷高效易推广,不仅适于砾性土动三轴液化试验,也为粗粒土动力特性试验研究提供了新的技术支撑。Abstract: The membrane compliance has a significant effect on the results of the triaxial liquefaction tests. The compensation method is one of the primary means to eliminate the impact of the membrane. The theoretical defects of the existing compensation methods are analyzed and verified in the comparison tests, and the new principle and method for the compensation of membrane compliance are proposed. Based on the large-scale dynamic triaxial liquefaction tests on the gravelly soils with various gravel contents and the measurement of membrane penetration volume, the feasibility and reliability of the new compensation method are verified by taking the modified pore pressure model, which can consider the membrane compliance as a reference. The research shows that the existing compensation principle will lead to inadequate compensation, which only uses the rebound water volume caused by the dynamic force as the total water supplement volume, and the new compensation principle is more scientific and reasonable, considering the effect of membrane distributary. In the dynamic triaxial liquefaction tests with different gravel contents and stresses, the results of the new method are consistent with the theoretical ones, and the variation law is uniform. Compared with the existing compensation method, the new method does not need repeated water replenishment and multiple approximations at a single compensation stage, and its operability is enhanced, and the compensation effect is superior. It is suitable for the dynamic triaxial liquefaction tests on gravelly soils and provides a new technical support for the dynamic characteristics tests on coarse-grained soils.
-
0. 引言
随着中国经济的稳步发展和综合国力的不断提高,公路隧道的建设也日新月异。新奥法是目前山岭隧道建设的主要施工技术体系,在新奥法的设计理念中,对现场的监控量测是不可或缺的工作之一[1]。尤其在目前信息化、智能化的趋势下[2],隧道施工的动态设计和实时响应依赖于对隧道断面收敛变形的把握。目前在钻爆法施工隧道中,主要使用全站仪对断面变形进行检测,但是采用这种方法获得的数据量较小,只能通过利用非线性函数对数据进行回归拟合分析的方法对隧道断面收敛变形值进行预测,然而由于数据量小,单次检测误差对拟合函数的影响较大,简单的函数曲线很难精确地反映出隧道断面的收敛变形情况。
而随着无线通信技术和智能传感器的高速发展,精确把握隧道断面的收敛变形情况成为了可能。Straser等[3]针对土木工程中结构的变形监测问题提出了无线传感网络(WSN)的概念。在此之后,WSN系统也被应用到了隧道变形的监控量测中[4-6]。WSN是一种分布式传感网络,它通过无线通信技术将各种传感器节点联系起来。相较于使用全站仪每天或多天的检测频率,WSN系统可以对隧道重点部位进行每小时甚至更密集的长时间连续监测,这样可以得到较大的监测数据量,并且呈现时间序列的特点。近年来,国内外众多学者针对时间序列提出了很多处理方法。赵洪波[7]基于支持向量机算法对围岩变形监测数据的非线性时间序列进行滚动预测。齐甦等[8]建立了灰色-马尔可夫链模型对围岩的变形进行预测。Yao等[9]建立了递归神经网络的预测方法,并采用插值的方法弥补了训练集不足的问题,提高了预测模型的精度。Xu等[10]利用长短时记忆网络预测了边坡位移的周期项时间序列。Yang等[11]提出了一种基于长短时记忆网络的动态模型来预测三峡库区的边坡位移。但是,对山岭隧道的实时无线安全感知和预测的研究尚少。
本文在营盘山隧道布设了一套WSN监测设备,并构建了基于Web的隧道施工安全风险动态管控系统平台。通过WSN设备获得监控量测数据的时间序列,用以此训练构造的长短时记忆(long short-term memory,LSTM)网络,预测出监测位置的稳定变形值。
1. 工程概况
营盘山隧道属于国家高速公路网G4216上海至成都高速公路工程华丽高速第9合同段,位于云南省丽江市华坪县,为双向四车道高速公路,全长11.31 km,属特长公路隧道。隧道最大埋深约877 m,穿越地层条件复杂,工程风险较高。
本文所监测的隧道段围岩属IV级围岩,埋深约450 m。营盘山隧道整体采用初期支护和二次衬砌相结合的复合式衬砌,监测隧道段的监测时间为初期支护施作后至二次衬砌施作前的一段时间。
2. 数据的采集及预处理
2.1 WSN监测系统
无线传感网络(WSN)是一种分布式传感网络,它通过无线通信技术将各种传感器节点联系起来。WSN系统包括数据采集节点、中继节点、网关和云端服务器等。传感器节点使用MEMS(micro electro mechanical system)传感器,具有体积小、成本低、功耗低和易于实现智能化等优点。数据采集节点采集该节点处所监测的数据,基于ZigBee通讯协议通过中继节点传递给网关,再通过4G网络从网关传递到云端服务器。在监测过程中,用户可以使用个人电脑或移动终端等在云端对各传感节点的数据进行分析处理。
本文中布设的无线激光传感器属于数据采集节点(图1),内置超低功耗的CPU、RTC芯片以及铁电存储器,采用锂电池供电,搭配高效DC/DC降压转换器,并用100 mm×100 mm×60 mm大小的金属铸铝外壳封装,具有P6防水能力。网关布设需要在4G信号良好的位置,一般布设在隧道洞口。当数据采集节点与网关之间距离超过500 m时,需要布设中继节点,以便将监测数据由数据采集节点传输至网关。
无线传感网络还可以调节其传感器节点的监控频率(本文工程项目所采用的频率默认设定为每小时1次)以适应不同的工程需求。凭借其小型化、无线化、实时性、灵活性等优势,无线传感器网络将越来越多地应用于隧道结构的监控量测中。
2.2 WSN系统布设
营盘山隧道采用上下台阶法钻爆开挖,监测方案包含隧道左线的3个断面(图2),其中,ZK23+080断面下台阶已开挖,ZK23+110和ZK23+140两个断面尚未进行下台阶开挖。本文选取较典型的ZK23+080里程断面的实际监测数据为研究对象,共布设3个无线激光传感器(图3),分别监测上台阶水平收敛值、下台阶水平收敛值和拱顶沉降值。为保护传感器设备不被钻爆施工破坏,在初衬面施工前预留了450 mm×300 mm×300 mm大小的洞位,用于布设无线激光传感器。另外,施工粉尘沉积会对监测精度造成一定的影响,本项目通过人工擦拭的方式除尘。
在监测断面洞周上,布设了一条LED风险警示灯带(图4),基于隧道的收敛变形对现场工人进行预警、报警,在隧道施工处于安全、预警和报警状态时,灯带分别显示绿色、黄色和红色。根据《公路隧道设计规范》(JTG D70—2004),各监测位置收敛变形的预警和报警值分别取0.8%和2.0%的洞周相对收敛值。
2.3 监测数据预处理
本文构建了基于Web的隧道施工安全风险动态管控系统平台,平台上直观地展现了工程概况、地理位置、工程进度及传感器的工作情况等,管理人员还可以填写项目的相关资料并对隧道段进行风险评估。
由于初期支护的混凝土表面不平整等原因,在平台上获得的实际施工中的监测数据不可避免地会产生一定的误差,所以首先采用高斯滤波器对监测数据进行降噪处理(图6)。高斯滤波器是一种线性平滑滤波器,可以有效消除噪声的影响。对于缺损的数据点,采用线性插值的方法进行补全[9]。
无线激光传感器的监测精度为1 mm,去噪后的数据的误差都在可接受范围内。经过高斯滤波器去噪处理,数据更加合理可信。
3. 围岩变形时间序列预测
3.1 LSTM网络介绍
长短时记忆(long short-term memory,LSTM)网络是循环神经网络(recurrent neural network,RNN)的一个变种,它可以解决标准RNN神经网络对早期信息学习不足的问题[12],其核心是通过3个门来控制单元信息:遗忘门、输入门和输出门。遗忘门决定丢弃旧单元中的哪些信息,输入门决定在新单元中存储哪些信息,输出门决定输出哪些单元信息。LSTM网络通过这种方式可以记住有用的信息,也可以忘记无用的信息,在时间序列的预测方面更具优势。
3.2 隧道监测位置变形预测
本文构建了1个3层LSTM网络来对隧道监测位置变形的时间序列进行预测,其中输入层、隐藏层、输出层神经元个数分别为1,4,1。在LSTM网络中对预处理后的数据进行训练,训练集与测试集的比例为2∶1,预测至收敛变形值接近稳定为止(图7),得到各预测曲线的误差(表1)。由于训练样本的波动,得到的预测曲线仍具有一定的波动,故采用高斯滤波器进行去噪,可以得到隧道变形趋于稳定的收敛变形值。
表 1 LSTM网络的均方根误差(RMSE)Table 1. RMSE of LSTM networks监测项目 训练集误差 测试集误差 上台阶水平收敛 0.1310 0.1277 下台阶水平收敛 0.3570 0.4165 拱顶沉降 0.3012 0.2256 由此可以得到各监测位置稳定阶段的收敛变形值,上台阶水平收敛值为15.89 mm,下台阶水平收敛值为12.39 mm,拱顶沉降值为22.72 mm。
3.3 预测结果分析
模仿全站仪检测的模式,对每个时间序列等间距取6个数据点作为基础数据点,对于上台阶水平收敛和拱顶沉降,取11月6日下台阶开挖之后的数据。每个监测位置用3种常用非线性函数曲线对基础数据点进行拟合(图8),拟合结果用均方根误差评价(表2)。
表 2 拟合曲线的均方根误差(RMSE)Table 2. RMSE of fitting curves监测位置 拟合曲线 RMSE 上台阶水平收敛 LSTM 0.1310 y=15.47-11.11/x 0.4200 y=x/(0.0118+0.0260x)-21.89 0.3347 y=-13.81x^(-0.634)+18.39 0.3105 下台阶水平收敛 LSTM 0.3570 y=14.99-14.39/x 0.7181 y=x/(0.00187+0.0102x)-82.18 0.8091 y=3120x^(0.00227)-3118 1.3605 在上、下台阶水平收敛的预测结果中可以看出,LSTM网络对时间序列曲线的趋势预测更加准确,在基础数据点较少的情况下,相对于非线性曲线拟合的方法可以更加准确地反应隧道监测位置的变形细节。由于本文拱顶沉降的监测数据量过少,选取的基础数据点尚不能反映变形之规律,因而不具有参考意义。
4. 结论
本文在营盘山隧道布设WSN系统的基础上,基于监测数据的时间序列,采用LSTM网络对监测位置的收敛变形进行预测。主要结论如下:
(1)将WSN系统布设在营盘山隧道中,有效地监测了ZK23+080里程断面各位置的收敛变形,证明WSN系统对山岭隧道施工期的形变监测具有一定的工程可行性和应用价值。
(2)构建了基于Web的隧道施工安全风险动态管控系统平台,管理人员可以在平台上获取项目的有关信息并实时查看传感器的工作情况。
(3)提出了采用LSTM网络预测山岭隧道的收敛变形值,利用机器学习方法结合WSN系统得到的大量数据,可以更加准确地反映隧道断面变形的过程。
-
表 1 试验砾性土基本参数及工况
Table 1 Basic parameters of soils and tests
名称 d10 /mmd20 /mmd50 /mm含砾量/% 试样直径/mm 橡皮膜厚度/mm 试验CSR 无补偿 Ramana 本文 SBC-G65(真液化土) 0.43 0.95 13.6 65 300 2 0.075 ~ 0.2 0.1/ 0.15 0.1/ 0.15 SBC-G80 0.8 5 25 80 300 2 0.125 ~ 0.25 0.1/ 0.15 0.1/ 0.15 SBC-G100 10 13 32 100 300 2 0.15 ~ 0.275 0.1/ 0.15 0.1/ 0.15 表 2 砾性土橡皮膜顺变性计算修正的关键参数
Table 2 Key parameters for calculation correction of membrane compliance of gravelly soils
含砾量/% 孔压增量模型参数 橡皮膜顺变性修正系数 Cr C1,0 C2,0 A4,0 65 10.80 0.710 2.67 1.688 80 6.97 0.777 2.73 2.930 100 5.985 0.950 2.95 5.820 表 3 不同补偿方法达到初始液化所需要的振动次数
Table 3 Vibration times required by different compensation methods to achieve initial liquefaction
方法名称 SBC-G65 SBC-G80 SBC-G100 CSR=0.1 CSR =0.15 CSR =0.1 CSR =0.15 CSR =0.1 CSR =0.15 计算修正法 29.5 5 64.5 6.5 383.5 7.5 本文新补偿法 39.5 7 66.5 11.5 342.0 10.5 Ramana方法 58.0 14 100.0 17.5 635.0 11.5 注: 单次振动周期内试样达液化,按0.5次计。 -
[1] 袁晓铭, 秦志光, 刘荟达, 等. 砾性土液化的触发条件[J]. 岩土工程学报, 2018, 40(5): 777-785. YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, et al. Necessary conditions of trigger liquefaction for gravelly soils layers[J]. Chinese Journal of Geotechanical Engineering, 2018, 40(5): 777-785. (in Chinese)
[2] 陈龙伟, 袁晓铭, 孙锐. 2011年新西兰Mw6.3地震液化及岩土震害评述[J]. 世界地震工程, 2013, 29(3): 1-9. doi: 10.3969/j.issn.1007-6069.2013.03.001 CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese) doi: 10.3969/j.issn.1007-6069.2013.03.001
[3] CUBRINOVSKI M, BRAY J, DE La Torre C, et al. Liquefaction effects and associated damages observed at the Wellington Centreport from the 2016 Kaikoura earthquake[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50(2): 152-173. doi: 10.5459/bnzsee.50.2.152-173
[4] EVANS D M, SEED H B. Undrained Cyclic Triaxial Testing of Gravels-the Effect of Membrane Compliance[R]. Report No.UCB/EERC-87/08. 1987.
[5] NOOR M J M, NYUIN J D, DERAHMAN A. A graphical method for membrane penetration in triaxial tests on granular soils[J]. J Inst Eng, Malaysia, 2012, 73(1): 23-30.
[6] 王洪瑾. 橡皮膜顺变性对三轴试验中体变和孔隙水压力影响的试验研究[C]//中国土木工程学会第四届土力学及基础工程学术会议论文选集, 1983, 北京. WANG Hong-jin. Experimental study on the influence of membrane compliance on bulk deformation and pore water pressure in triaxial test[C]//Selected papers of the 4th soil mechanics and foundation engineering academic conference of China Civil Engineering Society, 1983, Beijing. (in Chinese)
[7] SIVATHAYALAN S, VAID Y P. Truly undrained response of granular soils with no membrane-penetratio[J]. Canadian Geotechnical Journal, 1998, 35(5): 730-739. doi: 10.1139/t98-048
[8] 周景星, 周克骥, 王洪瑾. 动三轴试验中橡皮膜顺变性的影响及其校正方法[J]. 水利学报, 1986(5): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198605001.htm ZHOU Jing-xing, ZHOU Ke-ji, WANG Hong-jin. The membrane effect and its alignment methods in dynamic triaxial test[J]. Journal of Hydraulic Engineering, 1986(5): 11-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198605001.htm
[9] 王昆耀, 常亚屏, 陈宁. 粗粒土试样橡皮膜嵌入影响的初步研究[J]. 水电与抽水蓄能, 2000, 24(4): 45-46. doi: 10.3969/j.issn.1671-3893.2000.04.015 WANG Kun-yao, CHANG Ya-ping, CHEN Ning. A preliminary study on membrane penetration effects in coarse-grained soil specimens[J]. Dam Observation and Geotechnical Tests, 2000, 24(4): 45-46. (in Chinese) doi: 10.3969/j.issn.1671-3893.2000.04.015
[10] BANEJEE N G, SEED H B, CHAN C K. Cyclic Behavior of Dense Coarse Grained Materials in Relation to the Seismic Stability of Dams[R]. California: Earthquake Engineering Research Center, University of California, Berkeley, 1979: 79-13.
[11] TOKIMATSU K, NAKAMURA K. A liquefaction test without membrane penetration effects[J]. Journal of the Japanese Society of Soil Mechanics and Foundation Engineering, 1986, 26(4): 127-138.
[12] 陈春霖, 张惠明. 饱和砂土三轴试验中的若干问题[J]. 岩土工程学报, 2000, 22(6): 659-663. doi: 10.3321/j.issn:1000-4548.2000.06.005 CHEN Chun-lin, ZHANG Hui-ming. Some problems in triaxial test on saturated sands[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 659-663. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.06.005
[13] YAMASHITA S, TOKI S, SUZUKI T. Effects of membrane penetration on modulus and poisson\"s ratio for undrained cyclic triaxial conditions[J]. Soils and Foundations, 1996, 36(4): 127-133. doi: 10.3208/sandf.36.4_127
[14] HAERI, S M, SHAKERI, M R, SHAHCHERAGHI S A. Dynamic strength of gravelly sand with emphasis on the effect of membrane compliance[C]//14th World Conference on Earthquake Engineering, Beijing, 2008.
[15] MIURA S, KAWAMURA S. A procedure minimizing membrane penetration effects in undrained triaxial test[J]. Soils and Foundations, 1996, 36(4): 119-126. doi: 10.3208/sandf.36.4_119
[16] SEED R B, ANWAR H. Development of a Laboratory Technique for Correcting Results of Undrained Triaxial Shear Tests on Soils Containing Coarse Particles for Effects of Membrane Compliance[R]. California: Reprint of Stanford University Research, Leland Stanford Junior University, 1987.
[17] RAMANA K V, RAJU V S. Constant-volume triaxial tests to study the effects of membrane penetration[J]. Geotechnical Testing Journal, 1981, 4(3): 117-122. doi: 10.1520/GTJ10777J
[18] KRAMER S L, SIVANESWARAN N. A Nondestructive Specimen-Specific Method for Measurement of Membrane Penetration in the Triaxial Test[J]. Geotechnical Testing Journal, 1989, 12(1): 50-59. doi: 10.1520/GTJ10674J
[19] 谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011. XIE Ding-yi. Soil Dynamics[M]. Beijing: Higher Education Press, 2011. (in Chinese)
[20] MARTIN G R, SEED H B, FINN W D. Effects of system compliance on liquefaction tests[J]. Journal of the Geotechnical Engineering Division, 1978, 104(4): 463-479.
[21] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2009. CHEN Yu-min, XU Ding-ping. FLAC/FLAC3D Fundamentals and Engineering Applications[M]. Beijing: China Water & Power Press, 2009. (in Chinese)
[22] HAERI S M, SHAKERI M R. Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading[J]. Geotechnical Testing Journal, 2010, 33(5): 658-661.
[23] 刘荟达, 袁晓铭, 王鸾, 等. 宽级配砾性土橡皮膜嵌入量计算新方法[J]. 岩石力学与工程学报, 2020. doi: 10.13722/j.cnki.jrme.2019.1216. LIU Hui-da, YUAN Xiao-ming, WANG Luan, et al. Research and new calculation formula of membrane penetration in wide graded gravel soils sample[J]. Chinese Journal of Rock Mechanics and Engineering, 2020. doi: 10.13722/j.cnki.jrme.2019.1216. (in Chinese)
[24] TANAKA Y, KOKUSHO T, YOSHIDA Y, et al. Method for evaluating membrane compliance and system compliance in undrained cyclic shear tests[J]. Soils and Foundations, 1991, 31(3): 30-42.
[25] MARTIN G R, FINN W D I, SEED H B. Foundamentals of Liquefaction under Cyclic Loading[J]. Journal of the Geotechnical Engineering Division ASCE, 1975, 101(GT6): 551-569.
[26] BYRNE P M. A cyclic shear-volume coupling and pore pressure model for sand[C]//Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 1991, Saint Louis.
[27] ISHIHARA K, TATSUOKA F, YASUDO S. Undrained deformation and liquefaction of sand under cyclic stresses[J]. Soils and Foundations, 1975, 15(1): 29-44.
[28] 王昆耀, 常亚屏, 陈宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000(2): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200002006.htm WANG Kun-yao, CHANG Ya-ping, CHEN Ning. Experimental study of liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000(2): 37-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200002006.htm
[29] 王艳丽, 饶锡保, 王占彬, 等. 含砾量对饱和砂砾土液化特性的影响[J]. 地震工程学报, 2015, 37(2): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502018.htm WANG Yan-li, RAO Xi-bao, WANG Zhan-bin, et al. Effect of gravel content on liquefaction characteristics of saturated sandy gravels[J]. China Earthquake Engineering Journal, 2015, 37(2): 390-396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502018.htm
[30] EVANS M D, ZHOU S. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
[31] 土工试验规程:SL237—1999[S]. 1999. Geotechnical Test Rules: SL237—1999[S]. 1999. (in Chinese)
[32] 丰万玲, 石兆吉. 判别水平土层液化势的孔隙水压力分析方法[J]. 工程抗震, 1988(4): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ198804006.htm FENG Wan-ling, SHI Zhao-ji. Pore pressure analysis method for estimating liquefaction potential of horizontal soil strata[J]. Earthquake Resistant, 1988(4): 32-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ198804006.htm
[33] 孙锐, 袁晓铭. 非均等固结下饱和砂土孔压增量简化计算公式[J]. 岩土工程学报, 2005, 27(9): 1021-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509009.htm SUN Rui, YUAN Xiao-ming. Simplified incremental formula for estimating pore pressure of saturated sands under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1021-1025. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509009.htm
-
期刊类型引用(2)
1. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 . 百度学术
2. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 . 百度学术
其他类型引用(6)