Three-dimensional distinct element analysis of mechanical properties of structured sands
-
摘要: 利用离散元法对结构性砂土的三轴试验进行了三维数值模拟并对其宏观特性进行了分析。首先将考虑胶结尺寸(宽度和厚度)的三维胶结接触模型导入离散元软件PFC3D中,对结构性砂土数值试样进行三轴试验数值模拟;然后对比分析离散元模拟与室内试验结果;最后从宏观力学角度对试验结果进行了分析。离散元模拟结果表明:结构性砂土与无胶结松散砂土表现不同,其在低围压时表现出应变软化和体积剪胀特征,并随胶结含量的增加或围压的减少而愈发显著,在高围压时则呈应变硬化和体积剪缩现象;低平均应力时,随胶结含量的增加,试样峰值内摩擦角、黏聚力以及内摩擦角均增加,其中黏聚力增加较为明显,随着平均应力的增加,峰值强度包线逐渐趋向于无胶结土。Abstract: The three-dimensional (3D) distinct element method (DEM) is employed to investigate the behaviours of cemented sands at the macro-scale in triaxial tests. A 3D bond contact model is implemented in a DEM commercial software (PFC3D) to simulate the triaxial tests on cemented specimens, and the simulated data are compared with the experimental results. Finally, the underlying mechanism behaviour is discussed at the macroscopic scale. The DEM results show that, the structured sands and uncemented loose sands have different macroscopic behaviours. In the conventional triaxial compression tests, the strain softening and the shear dilation are more pronounced in the structured sands with the increasing cement content or decreasing confining pressure. Under high confining pressures, the specimens show strain hardening and shear contraction. Both the cohesion and the peak friction angle increase with the increasing cement content under relative low-mean stresses. As the mean stress increases, the strength envelops for cemented sands converge gradually to those for uncemented geomaterials.
-
Keywords:
- structured sand /
- triaxial test /
- DEM /
- stress-strain relationship /
- strength envelope
-
[1] MITCHELL J K, SOGA K.Fundamentals of soil behavior[M]. 3rd ed. New York: John Wiley and Sons, 2005: 5-33. [2] BROMS B B, BOMAN P.Lime columns-a new foundation method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1979, 105(4): 539-556. [3] CLAYTON C R I, HIGHT D W, HOPPER R J. Progressive destructuring of Bothkennar clay implications for sampling and reconsolidation procedures[J]. Géotechnique, 1992, 42(2): 219-239. [4] CUNDALL P A, STRACK O D L. Discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. [5] JIANG M J, Yu H S, LEROUEIL S.A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method[J]. International Journal for Numerical Methods in Engineering, 2007, 69(6): 1158-1193. [6] JIANG M J, SHEN Z F, WANG J F.A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers & Geotechnics, 2015, 65: 147-163. [7] JIANG M J, ZHANG F G, THORNTON C.A simple three-dimensional distinct element modeling of the mechanical behavior of bonded sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(16): 1791-1820. [8] WANG Y H, LEUNG S C.A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1): 29-44. [9] ROTTA G V, CONSOLI N C, PRIETTO P D M, et al. Isotropic yielding in an artificially cemented soil cured under stress[J]. Géotechnique, 2003, 53(5): 493-501. [10] JIANG M J, KONRAD J, LEROUEIL S.An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. [11] LADE P V, OVERTON D D.Cementation effects in frictional materials[J]. Journal of Geotechnical Engineering, 1989, 115(10): 1373-1387. [12] CUCCOVILLO T, COOP M R.On the mechanics of structured sands[J]. Géotechnique, 1999, 49(6): 741-760. [13] LEROUEIL S, VAUGHAN P R.The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-48. -
期刊类型引用(19)
1. 杜岩,张洪达,谢谟文,蒋宇静,张明,贾北凝. 矿山采空区边坡动态稳定性评价方法. 工程科学学报. 2025(02): 215-223 . 百度学术
2. 潘网生,马宗源,傅良同. 贵州三叠纪垄头组软岩优势结构面研究意义和进展. 绿色科技. 2024(06): 236-240 . 百度学术
3. 陶通铭. 采动作用下岩质斜坡变形破坏机制研究——以贵州龙场崩塌为例. 中国水运(下半月). 2024(11): 113-114+145 . 百度学术
4. 陶通铭. 采动作用下岩质斜坡变形破坏机制研究——以贵州龙场崩塌为例. 中国水运. 2024(22): 113-114+145 . 百度学术
5. 梁博,杨更社,冯伟,潘振兴,孙杰龙,刘慧,陈奇. 冻融诱发平面滑移型岩质边坡失稳模型试验研究. 西安科技大学学报. 2024(06): 1118-1126 . 百度学术
6. 于群群,孙朝燚. 顺层岩质边坡滑剪破坏规律研究. 河南城建学院学报. 2023(01): 15-21 . 百度学术
7. 杨忠平,向宫固,赵茜,刘新荣,赵亚龙. 水动力-溶蚀作用下灰岩结构面剪切力学特性. 岩土工程学报. 2023(08): 1555-1563 . 本站查看
8. 李华. 基于无人机航摄三维模型的地质信息提取和数值模拟应用. 中国水运(下半月). 2023(09): 31-33 . 百度学术
9. 牛犇,冯春,丛俊余,孙子正,张一鸣. 基于CDEM颗粒流的三维高速远程滑坡成灾范围分析. 岩石力学与工程学报. 2023(S2): 4018-4027 . 百度学术
10. 杨小龙,王刚. 滑坡堆积体反粒序现象的离散元数值分析. 工程地质学报. 2023(06): 1941-1950 . 百度学术
11. 李华. 基于无人机航摄三维模型的地质信息提取和数值模拟应用. 中国水运. 2023(18): 31-33 . 百度学术
12. 穆成林,裴向军,王睿,王超. 基于物理模型试验的含多层软弱夹层顺层开挖高边坡变形破坏特征分析. 中国地质灾害与防治学报. 2022(03): 61-67 . 百度学术
13. 朱彦鹏,杜一博,杨校辉,张卫雄,朱鋆川. 甘肃舟曲河那滑坡变形特征及孕灾机理. 科学技术与工程. 2022(25): 10884-10895 . 百度学术
14. 朱赛楠,殷跃平,王猛,朱茂,王晨辉,王文沛,李俊峰,赵慧. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例. 岩土工程学报. 2021(04): 688-697 . 本站查看
15. 易连兴,李瑜. 岩溶及水动力对鸡尾山滑坡影响作用研究. 工程地质学报. 2021(03): 583-592 . 百度学术
16. 刘宁波,钟立力,龙森. 山区公路单斜坡回头曲线路段滑坡成因及治理方案研究. 路基工程. 2020(03): 190-195 . 百度学术
17. 李巧学,周洪福,冉涛,铁永波. 中倾侧向坡中一种岩体破坏过程的模拟研究. 路基工程. 2020(04): 62-65+72 . 百度学术
18. 崔芳鹏,李滨,杨忠平,吴乐乐,李宁,彭健全. 贵州纳雍普洒滑坡动力触发机制离散元模拟分析. 中国岩溶. 2020(04): 524-534 . 百度学术
19. 何忠明,杨煜,曾新发,刘森峙. 土洞演化过程中路基变形的响应分析. 中南大学学报(自然科学版). 2018(12): 3068-3076 . 百度学术
其他类型引用(28)