• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing, SHI An-ning, LIU Jun, ZHANG Fu-guang. Three-dimensional distinct element analysis of mechanical properties of structured sands[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 1-4. DOI: 10.11779/CJGE2019S2001
Citation: JIANG Ming-jing, SHI An-ning, LIU Jun, ZHANG Fu-guang. Three-dimensional distinct element analysis of mechanical properties of structured sands[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 1-4. DOI: 10.11779/CJGE2019S2001

Three-dimensional distinct element analysis of mechanical properties of structured sands

More Information
  • Received Date: April 29, 2019
  • Published Date: July 19, 2019
  • The three-dimensional (3D) distinct element method (DEM) is employed to investigate the behaviours of cemented sands at the macro-scale in triaxial tests. A 3D bond contact model is implemented in a DEM commercial software (PFC3D) to simulate the triaxial tests on cemented specimens, and the simulated data are compared with the experimental results. Finally, the underlying mechanism behaviour is discussed at the macroscopic scale. The DEM results show that, the structured sands and uncemented loose sands have different macroscopic behaviours. In the conventional triaxial compression tests, the strain softening and the shear dilation are more pronounced in the structured sands with the increasing cement content or decreasing confining pressure. Under high confining pressures, the specimens show strain hardening and shear contraction. Both the cohesion and the peak friction angle increase with the increasing cement content under relative low-mean stresses. As the mean stress increases, the strength envelops for cemented sands converge gradually to those for uncemented geomaterials.
  • [1]
    MITCHELL J K, SOGA K.Fundamentals of soil behavior[M]. 3rd ed. New York: John Wiley and Sons, 2005: 5-33.
    [2]
    BROMS B B, BOMAN P.Lime columns-a new foundation method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1979, 105(4): 539-556.
    [3]
    CLAYTON C R I, HIGHT D W, HOPPER R J. Progressive destructuring of Bothkennar clay implications for sampling and reconsolidation procedures[J]. Géotechnique, 1992, 42(2): 219-239.
    [4]
    CUNDALL P A, STRACK O D L. Discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [5]
    JIANG M J, Yu H S, LEROUEIL S.A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method[J]. International Journal for Numerical Methods in Engineering, 2007, 69(6): 1158-1193.
    [6]
    JIANG M J, SHEN Z F, WANG J F.A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers & Geotechnics, 2015, 65: 147-163.
    [7]
    JIANG M J, ZHANG F G, THORNTON C.A simple three-dimensional distinct element modeling of the mechanical behavior of bonded sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(16): 1791-1820.
    [8]
    WANG Y H, LEUNG S C.A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1): 29-44.
    [9]
    ROTTA G V, CONSOLI N C, PRIETTO P D M, et al. Isotropic yielding in an artificially cemented soil cured under stress[J]. Géotechnique, 2003, 53(5): 493-501.
    [10]
    JIANG M J, KONRAD J, LEROUEIL S.An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
    [11]
    LADE P V, OVERTON D D.Cementation effects in frictional materials[J]. Journal of Geotechnical Engineering, 1989, 115(10): 1373-1387.
    [12]
    CUCCOVILLO T, COOP M R.On the mechanics of structured sands[J]. Géotechnique, 1999, 49(6): 741-760.
    [13]
    LEROUEIL S, VAUGHAN P R.The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-48.
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (325) PDF downloads (192) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return