• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于Biot理论多种简化模型的适用性研究

胡丹, 李芬, 张开银

胡丹, 李芬, 张开银. 基于Biot理论多种简化模型的适用性研究[J]. 岩土工程学报, 2019, 41(S1): 105-108. DOI: 10.11779/CJGE2019S1027
引用本文: 胡丹, 李芬, 张开银. 基于Biot理论多种简化模型的适用性研究[J]. 岩土工程学报, 2019, 41(S1): 105-108. DOI: 10.11779/CJGE2019S1027
HU Dan, LI Fen, ZHANG Kai-yin. Applicability of simplified formulations based on Biot’s theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 105-108. DOI: 10.11779/CJGE2019S1027
Citation: HU Dan, LI Fen, ZHANG Kai-yin. Applicability of simplified formulations based on Biot’s theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 105-108. DOI: 10.11779/CJGE2019S1027

基于Biot理论多种简化模型的适用性研究  English Version

基金项目: 大连理工大学海岸与近海工程国家重点实验室开放课题基金项目(LP1717)
详细信息
    作者简介:

    胡丹(1989—),女,博士研究生,主要从事桩-饱和土相互作用研究。E-mail:hudan1989.happy@163.com。

Applicability of simplified formulations based on Biot’s theory

  • 摘要: 基于Biot理论提出的简化模型主要包括以下简化形式:忽略混合物动力平衡方程和广义达西定律中相对加速度项;忽略混合物动力平衡方程中相对加速度项以及广义达西定律中所有惯性项;忽略控制方程中所有惯性项。分析了多种简化模型在不同材料参数和不同激励频率作用下的适用性,基于不同简化模型得到了一维有限饱和土柱的位移和孔压的频域解析解,引入无量纲量综合考虑渗透系数、孔隙率和激励频率等参数的影响,并依据这些无量纲量分析各种简化模型的适用范围。
    Abstract: Based on the Biot’s theory, three simplified formulations are proposed. The simplifications mainly include neglecting the relative acceleration terms in the dynamic mixture equilibrium equation and the generalized Darcy’s law, neglecting the relative acceleration terms in the dynamic mixture equilibrium equation and all the inertial terms in the generalized Darcy’s law, and neglecting all the inertial terms in the equations. The applicability of the simplifications are discussed with the help of analytical solutions for one-dimensional finite fully saturated poroelastic column. Two non-dimensional parameters are introduced to discuss the effects of permeability, excitation frequency and porosity.
  • [1] BIOT M A.General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
    [2] BIOT M A.Theory of propagation of elastic waves in a fluid-saturated porous solid: Ⅱ higher frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 179-191.
    [3] BIOT M A.Theory of propagation of elastic waves in a fluid-saturated porous solid: I low-frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-179.
    [4] BIOT M A.Theory of deformation of a porous viscoelastic anisotropic solid[J]. Journal of Applied Physics, 1956, 27(5): 459-467.
    [5] ZIENKIEWICZ O C, CHANG C T, BETTESS P.Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J]. Géotechnique, 1980, 30(4): 385-395.
    [6] SCHANZ M, CHENG H D.Transient wave propagation in a one-dimensional poroelastic column[J]. Acta Mechanica. 2000, 145(1/2/3/4): 1-18.
    [7] SCHANZ M, STRUCKMEIER V.Wave propagation in a simplified modelled poroelastic continuum: fundamental solutions and a time domain boundary element formulation[J]. International Journal for Numerical Methods in Engineering, 2005, 64(13): 1816-1839.
    [8] ZIENKIEWICZ O C, SHIOMI T.Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1984, 8(1): 71-96.
计量
  • 文章访问数:  267
  • HTML全文浏览量:  7
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-27
  • 发布日期:  2019-07-14

目录

    /

    返回文章
    返回