• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土工离心机模拟泥石流问题的相似性考虑

宋东日, 周公旦, CHOI Clarence Edward, 白艺彤, 胡洪森

宋东日, 周公旦, CHOI Clarence Edward, 白艺彤, 胡洪森. 土工离心机模拟泥石流问题的相似性考虑[J]. 岩土工程学报, 2019, 41(12): 2262-2271. DOI: 10.11779/CJGE201912011
引用本文: 宋东日, 周公旦, CHOI Clarence Edward, 白艺彤, 胡洪森. 土工离心机模拟泥石流问题的相似性考虑[J]. 岩土工程学报, 2019, 41(12): 2262-2271. DOI: 10.11779/CJGE201912011
SONG Dong-ri, ZHOU Gong-dan, CHOI Clarence Edward, BAI Yi-tong, HU Hong-sen. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. DOI: 10.11779/CJGE201912011
Citation: SONG Dong-ri, ZHOU Gong-dan, CHOI Clarence Edward, BAI Yi-tong, HU Hong-sen. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. DOI: 10.11779/CJGE201912011

土工离心机模拟泥石流问题的相似性考虑  English Version

基金项目: 国家自然科学基金项目(51809261,11672318,51709052); 香港特别行政区政府研究资助局项目(T22-603/15-N); 香港科技大学赛马会高等研究院项目
详细信息
    作者简介:

    宋东日(1987— ),男,副研究员,博士,主要从事泥石流(碎屑流)中固-液耦合作用对宏观运动行为的影响、泥石流(碎屑流)与防护结构相互作用机理及地质灾害的土工离心机模拟等方面的研究。E-mail: drsong@imde.ac.cn。

    通讯作者:

    周公旦,E-mail:gordon@imde.ac.cn

  • 中图分类号: TU43

Scaling principles of debris flow modeling using geotechnical centrifuge

  • 摘要: 尺度效应是阻碍对泥石流复杂动力学过程理解的最主要因素。土工离心机通过提供一个等效的高倍重力加速度场,能够在模型中还原岩土工程原型的应力状态,为泥石流物理模拟的尺度效应难题提供了一个经济可行的解决方案。在总结前人提出的两相流(泥石流)无量纲参数的基础上,建立了应用于土工离心机模拟泥石流的分层次相似性试验设计体系,可以确保模型和原型中泥石流运动学与动力学参数绝对值和相对值的一致,从而可以系统性地还原泥石流原型问题的物理过程。同时,针对对模拟结果产生较大影响的科里奥利效应和1g自然重力加速度,建议试验设计阶段选择有效旋转半径更大的离心机并适当降低旋转角速度。研究结果对泥石流和碎屑流的小尺度、大尺度物理模拟以及离心机模拟具有理论和技术层面的参考意义。
    Abstract: The scale effect of debris flow hinders the in-depth understanding of debris flow dynamics. The geotechnical centrifuge can replicate the appropriate stress states of the prototype through an equivalent elevated centrifugal acceleration field. The geotechnical centrifuge provides a cost-effective solution for the scale effect of physical modelling of debris flows. Based on the existing dimensionless group of two-phase flows, a hierarchical scaling solution is proposed for the design of debris flow experiments in the centrifuge. It ensures that both the absolute values (i.e., absolute stresses) and the relative values (characterized by the dimensionless group) in the model match those in the prototype, so that the fundamental physical processes in debris flows can be captured. Furthermore, the technical issues, the Coriolis effect and the influence of the real 1g gravitational acceleration, are quantitatively evaluated. To minimize these effects, a larger effective centrifuge radius and a lower angular velocity are recommended in the design of debris flow experiment using centrifuge. This study provides a significant theoretical and technical reference to the small-scale and large-scale physical modelling, and centrifuge modelling of debris flow problems.
  • [1] HUNGR O, LEROUEIL S, PICARELLI L.The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194.
    [2] MCARDELL B W, BARTELT P, KOWALSKI J.Field observations of basal forces and fluid pore pressure in a debris flow[J]. Geophysical Research Letters, 2007, 34(7): 406-409.
    [3] WENDELER C, MCARDELL B W, RICKENMANN D, et al.Field testing and numerical modeling of flexible debris flow barriers[C]// Proceedings of the Sixth International Conference of Physical Modelling in Geotechnics, 2006: 4-6.
    [4] ZHOU G G D, HU H S, SONG D, et al. Experimental study on the regulation function of slit dam against debris flows[J]. Landslides, 2019, 16(1): 75-90.
    [5] KOO R C H, KWAN J S H, NG C W W, et al. Velocity attenuation of debris flows and a new momentum-based load model for rigid barriers[J]. Landslides, 2017, 14(2): 617-629.
    [6] HSU L, DIETRICH W E, SKLAR L S.Mean and fluctuating basal forces generated by granular flows: laboratory observations in a large vertically rotating drum[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(6): 1283-1309.
    [7] IVERSON R M, LOGAN M, LAHUSEN R G, et al.The perfect debris flow? Aggregated results from 28 large-scale experiments[J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F03005.
    [8] MORIWAKI H, INOKUCHI T, HATTANJI T, et al.Failure processes in a full-scale landslide experiment using a rainfall simulator[J]. Landslides, 2004, 1(4): 277-288.
    [9] BUGNION L, MCARDELL B, BARTLET P, et al.Measurements of debris flow impact pressure on obstacles[J]. Landslides, 2012, 9(2): 179-187.
    [10] 陈晓清, 崔鹏, 冯自立, 等. 滑坡转化泥石流起动的人工降雨试验研究[J]. 岩石力学与工程学报, 2006, 25(1): 106-116.
    (CHEN Xiao-qing, CUI Peng, FENG Zi-li, et al.Artificial rainfall experimental study on landslide translation to debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 106-116. (in Chinese))
    [11] IVERSON R M, DENLINGER R P.Flow of variably fluidized granular masses across three-dimensional terrain: 1 Coulomb mixture theory[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B1): 537-552.
    [12] IVERSON R M, LOGAN M, DENLINGER R P.Granular avalanches across irregular three-dimensional terrain: 2 experimental tests[J]. Journal of Geophysical Research, 2004, 109(F0105).
    [13] IVERSON R M.Scaling and design of landslide and debris- flow experiments[J]. Geomorphology, 2015, 244: 9-20.
    [14] IVERSON R M, GEORGE D L.A depth-averaged debris-flow model that includes the effects of evolving dilatancy: I physical basis[J]. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences, 2014, 470(2170): 20130819.
    [15] 周健, 杨浪, 王连欣, 等. 不同颗粒组分下泥石流离心机模型试验研究[J]. 岩土工程学报, 2015, 37(12): 2167-2174.
    (ZHOU Jian, YANG Lang, WANG Lian-xin, et al.Centrifugal model tests on debris flow with different particle compositions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2167-2174. (in Chinese))
    [16] MILNE F D, BROWN M J, KNAPPETT J A, et al.Centrifuge modelling of hillslope debris flow initiation[J]. Catena, 2012, 92: 162-171.
    [17] BOWMAN E T, LAUE J, IMRE B, et al.Experimental modelling of debris flow behaviour using a geotechnical centrifuge[J]. Canadian Geotechnical Journal, 2010, 47(7): 742-762.
    [18] CABRERA M A, WU W.Experimental modelling of free-surface dry granular flows under a centrifugal acceleration field[J]. Granular Matter, 2017, 19(4): 78.
    [19] SONG D, NG C W W, CHOI C E, et al. Influence of debris flow solid fraction on rigid barrier impact[J]. Canadian Geotechnical Journal, 2017, 54(10): 1421-1434.
    [20] SONG D, CHOI C E, NG C W W, et al. Geophysical flows impacting a flexible barrier: effects of solid-fluid interaction[J]. Landslides, 2018, 15(1): 99-110.
    [21] BOWMAN E T, TAKE W A, RAIT K L, et al.Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal, 2012, 49(4): 460-476.
    [22] 赵天龙, 陈生水, 王俊杰, 等. 堰塞坝漫顶溃坝离心模型试验研究[J]. 岩土工程学报, 2016, 38(11): 1965-1972.
    (ZHAO Tian-long, CHEN Sheng-shui, WANG Jun-jie, et al.Centrifugal model tests overtopping failure of barrier dams[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1965-1972. (in Chinese))
    [23] SCHOFIELD A N.Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268.
    [24] SAVAGE S B, HUTTER K.The motion of a finite mass of granular material down a rough incline[J]. Journal of Fluid Mechanics, 1989, 199: 177-215.
    [25] BAGNOLD R A.Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear[J]. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences, 1954, 225(1160): 49-63.
    [26] IVERSON R M.The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296.
    [27] IVERSON R M, GEORGE D L.Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster[J]. Géotechnique, 2016, 66(3): 175-187.
    [28] BOYER F, GUAZZELLI E, POULIQUEN O.Unifying suspension and granular rheology[J]. Physical Review Letters, 2011, 107: 188301.
    [29] BEEN K, JEFFERIES M G.A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
    [30] NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(1): 1-21.
    [31] Wood D M.Soil behaviour and critical state soil mechanics[M]. Cambridge University Press, 1990.
    [32] GARNIER J, GAUDIN C, SPRINGMAN S M, et al.Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling[J]. International Journal on Physical Modelling in Geotechnics, 2007, 7(3): 1-24.
    [33] BRUCKS A, ARNDT T, OTTINO J M, et al.Behavior of flowing granular materials under variable g[J]. Physical Review E, 2007, 75(3): 032301.
    [34] CHIKATAMARLA R, LAUE J, SPRINGMAN S M.Centrifuge scaling laws for guided free fall events including rockfalls[J]. International Journal of Physical Modelling in Geotechnics, 2006, 6(2): 15-26.
    [35] CHI K, ZAKERI A, HAWLADER B. Centrifuge modeling of subaqueous and subaerial landslides impact on suspended pipelines[C]// Pan-Am CGS Conference, 2011, Toronto, Ontario,Canada.
    [36] NG C W W, SONG D, CHOI C E, et al. A novel flexible barrier for landslide impact in centrifuge[J]. Géotechnique Letters, 2016, 6(3): 221-225.
    [37] TAYLOR R N.Geotechnical centrifuge technology[M]. Glasgow: Blackie Academic Professional, 1995.
    [38] SUTERA S P, SKALAK R.The history of Poiseuille's law[J]. Annual review of fluid mechanics, 1993, 25(1): 1-20.
    [39] BRYANT S, TAKE W, BOWMAN E, et al.Physical and numerical modelling of dry granular flows under Coriolis conditions[J]. Géotechnique, 2015, 65(3): 188-200.
    [40] LEI G H, SHI J Y.Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193.
    [41] STANIER S A, BLABER J, TAKE W A, et al.Improved image-based deformation measurement for geotechnical applications[J]. Canadian Geotechnical Journal, 2015, 53(5): 727-739.
  • 期刊类型引用(17)

    1. 任连伟,王书彪,孔纲强,杨权威,邓岳保. 综合管廊始发井能源支护桩热力响应现场试验. 岩土力学. 2025(02): 573-581+612 . 百度学术
    2. 吴行州. 基坑围护桩作用下地层支护应力分析及应用. 城市轨道交通研究. 2024(03): 125-129+134 . 百度学术
    3. 赵鹏,张东海,李晓昭,张古彬,寇亚飞,高蓬辉. 基于p阶线性模型的地埋管换热器流体温度分布研究. 太阳能学报. 2024(06): 51-59 . 百度学术
    4. 马奇杰,周超. 非对称循环温度荷载下2×2能源群桩倾斜性状离心机试验研究. 岩土工程学报. 2024(10): 2158-2165 . 本站查看
    5. 唐丽云,邵海涛,唐华明,邱培勇,杜晓奇,张蕾,彭惠. 寒区道路桥梁融雪除冰技术研究综述. 中外公路. 2024(05): 25-38 . 百度学术
    6. 谢金利,覃英宏,李颖鹏,蒙相霖,谭康豪,张星月. 能源桩传热特性与热-力响应研究综述. 土木与环境工程学报(中英文). 2023(01): 155-166 . 百度学术
    7. 刘春阳,方鹏飞,张日红,谢新宇,娄扬,张秋善,朱大勇. 考虑间歇比的地热能源桩热-力性能试验研究. 浙江大学学报(工学版). 2023(03): 562-572 . 百度学术
    8. 周杨,孔纲强,李俊杰. 夏季工况下扩底能量桩单桩热力学响应分析. 中国公路学报. 2023(05): 65-74 . 百度学术
    9. 韩志攀,贾新聪,王晓超,牛彦平. 建筑墙体碳排放优化及减碳分析. 建筑结构. 2023(S1): 2356-2360 . 百度学术
    10. 陈玉,孔纲强,孟永东,王乐华,刘红程. 间歇与持续加热下含承台能量桩基础现场试验. 深圳大学学报(理工版). 2022(01): 75-84 . 百度学术
    11. 陈树森,赵蕾. 能源群桩与单桩热-力学响应特性对比分析. 地下空间与工程学报. 2022(03): 788-800 . 百度学术
    12. 吕成钊. 四种保温墙体的动态热响应特性测试. 建筑节能(中英文). 2022(08): 48-51 . 百度学术
    13. 任连伟,韩志攀,霍继炜,高宇甲. 桩顶约束下桥梁大直径能量桩热力响应现场试验. 防灾减灾工程学报. 2022(05): 937-944+960 . 百度学术
    14. 陈鑫,孔纲强,刘汉龙,江强,杨挺. 桥面融雪除冰能量桩热泵系统换热效率现场试验. 中国公路学报. 2022(11): 107-115 . 百度学术
    15. 张精兵,杨军兵,肖勇,海迪,陈智. 深层埋管式能源支护桩埋管形式与换热特性研究. 建筑结构. 2022(S2): 2515-2522 . 百度学术
    16. 任连伟,任军洋,孔纲强,刘汉龙. 冷热循环下PHC能量桩热力响应和承载性能现场试验. 岩土力学. 2021(02): 529-536+546 . 百度学术
    17. 孟甲. 钢管桩单桩涂料防腐施工质量管控方式探讨. 珠江水运. 2021(05): 59-60 . 百度学术

    其他类型引用(17)

计量
  • 文章访问数:  285
  • HTML全文浏览量:  26
  • PDF下载量:  358
  • 被引次数: 34
出版历程
  • 收稿日期:  2019-01-12
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回