• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Dong-ri, ZHOU Gong-dan, CHOI Clarence Edward, BAI Yi-tong, HU Hong-sen. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. DOI: 10.11779/CJGE201912011
Citation: SONG Dong-ri, ZHOU Gong-dan, CHOI Clarence Edward, BAI Yi-tong, HU Hong-sen. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. DOI: 10.11779/CJGE201912011

Scaling principles of debris flow modeling using geotechnical centrifuge

More Information
  • Received Date: January 12, 2019
  • Published Date: December 24, 2019
  • The scale effect of debris flow hinders the in-depth understanding of debris flow dynamics. The geotechnical centrifuge can replicate the appropriate stress states of the prototype through an equivalent elevated centrifugal acceleration field. The geotechnical centrifuge provides a cost-effective solution for the scale effect of physical modelling of debris flows. Based on the existing dimensionless group of two-phase flows, a hierarchical scaling solution is proposed for the design of debris flow experiments in the centrifuge. It ensures that both the absolute values (i.e., absolute stresses) and the relative values (characterized by the dimensionless group) in the model match those in the prototype, so that the fundamental physical processes in debris flows can be captured. Furthermore, the technical issues, the Coriolis effect and the influence of the real 1g gravitational acceleration, are quantitatively evaluated. To minimize these effects, a larger effective centrifuge radius and a lower angular velocity are recommended in the design of debris flow experiment using centrifuge. This study provides a significant theoretical and technical reference to the small-scale and large-scale physical modelling, and centrifuge modelling of debris flow problems.
  • [1]
    HUNGR O, LEROUEIL S, PICARELLI L.The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194.
    [2]
    MCARDELL B W, BARTELT P, KOWALSKI J.Field observations of basal forces and fluid pore pressure in a debris flow[J]. Geophysical Research Letters, 2007, 34(7): 406-409.
    [3]
    WENDELER C, MCARDELL B W, RICKENMANN D, et al.Field testing and numerical modeling of flexible debris flow barriers[C]// Proceedings of the Sixth International Conference of Physical Modelling in Geotechnics, 2006: 4-6.
    [4]
    ZHOU G G D, HU H S, SONG D, et al. Experimental study on the regulation function of slit dam against debris flows[J]. Landslides, 2019, 16(1): 75-90.
    [5]
    KOO R C H, KWAN J S H, NG C W W, et al. Velocity attenuation of debris flows and a new momentum-based load model for rigid barriers[J]. Landslides, 2017, 14(2): 617-629.
    [6]
    HSU L, DIETRICH W E, SKLAR L S.Mean and fluctuating basal forces generated by granular flows: laboratory observations in a large vertically rotating drum[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(6): 1283-1309.
    [7]
    IVERSON R M, LOGAN M, LAHUSEN R G, et al.The perfect debris flow? Aggregated results from 28 large-scale experiments[J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F03005.
    [8]
    MORIWAKI H, INOKUCHI T, HATTANJI T, et al.Failure processes in a full-scale landslide experiment using a rainfall simulator[J]. Landslides, 2004, 1(4): 277-288.
    [9]
    BUGNION L, MCARDELL B, BARTLET P, et al.Measurements of debris flow impact pressure on obstacles[J]. Landslides, 2012, 9(2): 179-187.
    [10]
    陈晓清, 崔鹏, 冯自立, 等. 滑坡转化泥石流起动的人工降雨试验研究[J]. 岩石力学与工程学报, 2006, 25(1): 106-116.
    (CHEN Xiao-qing, CUI Peng, FENG Zi-li, et al.Artificial rainfall experimental study on landslide translation to debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 106-116. (in Chinese))
    [11]
    IVERSON R M, DENLINGER R P.Flow of variably fluidized granular masses across three-dimensional terrain: 1 Coulomb mixture theory[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B1): 537-552.
    [12]
    IVERSON R M, LOGAN M, DENLINGER R P.Granular avalanches across irregular three-dimensional terrain: 2 experimental tests[J]. Journal of Geophysical Research, 2004, 109(F0105).
    [13]
    IVERSON R M.Scaling and design of landslide and debris- flow experiments[J]. Geomorphology, 2015, 244: 9-20.
    [14]
    IVERSON R M, GEORGE D L.A depth-averaged debris-flow model that includes the effects of evolving dilatancy: I physical basis[J]. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences, 2014, 470(2170): 20130819.
    [15]
    周健, 杨浪, 王连欣, 等. 不同颗粒组分下泥石流离心机模型试验研究[J]. 岩土工程学报, 2015, 37(12): 2167-2174.
    (ZHOU Jian, YANG Lang, WANG Lian-xin, et al.Centrifugal model tests on debris flow with different particle compositions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2167-2174. (in Chinese))
    [16]
    MILNE F D, BROWN M J, KNAPPETT J A, et al.Centrifuge modelling of hillslope debris flow initiation[J]. Catena, 2012, 92: 162-171.
    [17]
    BOWMAN E T, LAUE J, IMRE B, et al.Experimental modelling of debris flow behaviour using a geotechnical centrifuge[J]. Canadian Geotechnical Journal, 2010, 47(7): 742-762.
    [18]
    CABRERA M A, WU W.Experimental modelling of free-surface dry granular flows under a centrifugal acceleration field[J]. Granular Matter, 2017, 19(4): 78.
    [19]
    SONG D, NG C W W, CHOI C E, et al. Influence of debris flow solid fraction on rigid barrier impact[J]. Canadian Geotechnical Journal, 2017, 54(10): 1421-1434.
    [20]
    SONG D, CHOI C E, NG C W W, et al. Geophysical flows impacting a flexible barrier: effects of solid-fluid interaction[J]. Landslides, 2018, 15(1): 99-110.
    [21]
    BOWMAN E T, TAKE W A, RAIT K L, et al.Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal, 2012, 49(4): 460-476.
    [22]
    赵天龙, 陈生水, 王俊杰, 等. 堰塞坝漫顶溃坝离心模型试验研究[J]. 岩土工程学报, 2016, 38(11): 1965-1972.
    (ZHAO Tian-long, CHEN Sheng-shui, WANG Jun-jie, et al.Centrifugal model tests overtopping failure of barrier dams[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1965-1972. (in Chinese))
    [23]
    SCHOFIELD A N.Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268.
    [24]
    SAVAGE S B, HUTTER K.The motion of a finite mass of granular material down a rough incline[J]. Journal of Fluid Mechanics, 1989, 199: 177-215.
    [25]
    BAGNOLD R A.Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear[J]. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences, 1954, 225(1160): 49-63.
    [26]
    IVERSON R M.The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296.
    [27]
    IVERSON R M, GEORGE D L.Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster[J]. Géotechnique, 2016, 66(3): 175-187.
    [28]
    BOYER F, GUAZZELLI E, POULIQUEN O.Unifying suspension and granular rheology[J]. Physical Review Letters, 2011, 107: 188301.
    [29]
    BEEN K, JEFFERIES M G.A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
    [30]
    NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(1): 1-21.
    [31]
    Wood D M.Soil behaviour and critical state soil mechanics[M]. Cambridge University Press, 1990.
    [32]
    GARNIER J, GAUDIN C, SPRINGMAN S M, et al.Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling[J]. International Journal on Physical Modelling in Geotechnics, 2007, 7(3): 1-24.
    [33]
    BRUCKS A, ARNDT T, OTTINO J M, et al.Behavior of flowing granular materials under variable g[J]. Physical Review E, 2007, 75(3): 032301.
    [34]
    CHIKATAMARLA R, LAUE J, SPRINGMAN S M.Centrifuge scaling laws for guided free fall events including rockfalls[J]. International Journal of Physical Modelling in Geotechnics, 2006, 6(2): 15-26.
    [35]
    CHI K, ZAKERI A, HAWLADER B. Centrifuge modeling of subaqueous and subaerial landslides impact on suspended pipelines[C]// Pan-Am CGS Conference, 2011, Toronto, Ontario,Canada.
    [36]
    NG C W W, SONG D, CHOI C E, et al. A novel flexible barrier for landslide impact in centrifuge[J]. Géotechnique Letters, 2016, 6(3): 221-225.
    [37]
    TAYLOR R N.Geotechnical centrifuge technology[M]. Glasgow: Blackie Academic Professional, 1995.
    [38]
    SUTERA S P, SKALAK R.The history of Poiseuille's law[J]. Annual review of fluid mechanics, 1993, 25(1): 1-20.
    [39]
    BRYANT S, TAKE W, BOWMAN E, et al.Physical and numerical modelling of dry granular flows under Coriolis conditions[J]. Géotechnique, 2015, 65(3): 188-200.
    [40]
    LEI G H, SHI J Y.Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193.
    [41]
    STANIER S A, BLABER J, TAKE W A, et al.Improved image-based deformation measurement for geotechnical applications[J]. Canadian Geotechnical Journal, 2015, 53(5): 727-739.
  • Related Articles

    [1]ZHANG Wenjie, WANG Shifang, YU Haisheng, LI Xibin. Influences of redox potential on leaching behaviors of arsenic from a solidified contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1039-1046. DOI: 10.11779/CJGE20230119
    [2]CHANG Jin, YANG He-ping, XIAO Jie, XU Yong-fu. Soil-water chemical tests and action mechanism of acid rain infiltration into expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1483-1492. DOI: 10.11779/CJGE202208013
    [3]WAN Jia-lei, FENG Ya-song, LI Shuang-jie, ZHOU Shi-ji, WANG Shui, DU Yan-jun. Leaching, physical and mechanical characteristics of nickel-zinc-contaminated clay solidified/stabilized by a novel steel slag-based binder subjected to wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 213-216. DOI: 10.11779/CJGE2021S2050
    [4]FENG Ya-song, WANG Shui, ZHOU Shi-ji, XIA Wei-yi, GE Yu-xiang, ZHONG Dao-xu, DU Yan-jun. Stability of solidified/stabilized heavy metal-contaminated clay under outdoor natural exposure and indoor standard curing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 154-157. DOI: 10.11779/CJGE2021S2037
    [5]WANG Fei, XU Wang-qi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. DOI: 10.11779/CJGE202010022
    [6]FENG Ya-song, DU Yan-jun, ZHOU Shi-ji, XIA Wei-yi. Utilization of activated steel slag to solidify/stabilize industrially heavy-metal contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 112-116. DOI: 10.11779/CJGE2018S2023
    [7]CHEN Wei-chang, LI Li, SHAO Ming-shen, LIANG Xing-zhou, AFOLAGBOY Lekan Olatayo. Experimental study on carbonate dissolution and erosion effect under attack of simulated sulphuric acid rain[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2058-2067. DOI: 10.11779/CJGE201711014
    [8]WU Hao-liang, LIU Zhao-peng, DU Yan-jun, XUE Qiang, WEI Ming-li, LI Chun-ping. Effect of acid rain on leaching characteristics of lead, zinc and cadmium- contaminated soils stabilized by phosphate-based binder: semi-dynamic leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1058-1064. DOI: 10.11779/CJGE201706011
    [9]WANG Zhe, DING Yao-kun, XU Si-fa, XIONG Zhuang, ZHOU Hong-li, WU Xue-hui. Semi-dynamic leaching tests on leaching properties of MPC-solidified zinc-contaminated soil under acid rain environment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 697-704. DOI: 10.11779/CJGE201704015
    [10]JIANG Ning-jun, DU Yan-jun, LIU Song-yu, LI Chen-yang, LI Wen-tao. Leaching behaviors of cement-based solidification/stabilization treated lead contaminated soils under effects of acid rain[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 739-744.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return