Citation: | SONG Dong-ri, ZHOU Gong-dan, CHOI Clarence Edward, BAI Yi-tong, HU Hong-sen. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. DOI: 10.11779/CJGE201912011 |
[1] |
HUNGR O, LEROUEIL S, PICARELLI L.The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194.
|
[2] |
MCARDELL B W, BARTELT P, KOWALSKI J.Field observations of basal forces and fluid pore pressure in a debris flow[J]. Geophysical Research Letters, 2007, 34(7): 406-409.
|
[3] |
WENDELER C, MCARDELL B W, RICKENMANN D, et al.Field testing and numerical modeling of flexible debris flow barriers[C]// Proceedings of the Sixth International Conference of Physical Modelling in Geotechnics, 2006: 4-6.
|
[4] |
ZHOU G G D, HU H S, SONG D, et al. Experimental study on the regulation function of slit dam against debris flows[J]. Landslides, 2019, 16(1): 75-90.
|
[5] |
KOO R C H, KWAN J S H, NG C W W, et al. Velocity attenuation of debris flows and a new momentum-based load model for rigid barriers[J]. Landslides, 2017, 14(2): 617-629.
|
[6] |
HSU L, DIETRICH W E, SKLAR L S.Mean and fluctuating basal forces generated by granular flows: laboratory observations in a large vertically rotating drum[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(6): 1283-1309.
|
[7] |
IVERSON R M, LOGAN M, LAHUSEN R G, et al.The perfect debris flow? Aggregated results from 28 large-scale experiments[J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F03005.
|
[8] |
MORIWAKI H, INOKUCHI T, HATTANJI T, et al.Failure processes in a full-scale landslide experiment using a rainfall simulator[J]. Landslides, 2004, 1(4): 277-288.
|
[9] |
BUGNION L, MCARDELL B, BARTLET P, et al.Measurements of debris flow impact pressure on obstacles[J]. Landslides, 2012, 9(2): 179-187.
|
[10] |
陈晓清, 崔鹏, 冯自立, 等. 滑坡转化泥石流起动的人工降雨试验研究[J]. 岩石力学与工程学报, 2006, 25(1): 106-116.
(CHEN Xiao-qing, CUI Peng, FENG Zi-li, et al.Artificial rainfall experimental study on landslide translation to debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 106-116. (in Chinese)) |
[11] |
IVERSON R M, DENLINGER R P.Flow of variably fluidized granular masses across three-dimensional terrain: 1 Coulomb mixture theory[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B1): 537-552.
|
[12] |
IVERSON R M, LOGAN M, DENLINGER R P.Granular avalanches across irregular three-dimensional terrain: 2 experimental tests[J]. Journal of Geophysical Research, 2004, 109(F0105).
|
[13] |
IVERSON R M.Scaling and design of landslide and debris- flow experiments[J]. Geomorphology, 2015, 244: 9-20.
|
[14] |
IVERSON R M, GEORGE D L.A depth-averaged debris-flow model that includes the effects of evolving dilatancy: I physical basis[J]. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences, 2014, 470(2170): 20130819.
|
[15] |
周健, 杨浪, 王连欣, 等. 不同颗粒组分下泥石流离心机模型试验研究[J]. 岩土工程学报, 2015, 37(12): 2167-2174.
(ZHOU Jian, YANG Lang, WANG Lian-xin, et al.Centrifugal model tests on debris flow with different particle compositions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2167-2174. (in Chinese)) |
[16] |
MILNE F D, BROWN M J, KNAPPETT J A, et al.Centrifuge modelling of hillslope debris flow initiation[J]. Catena, 2012, 92: 162-171.
|
[17] |
BOWMAN E T, LAUE J, IMRE B, et al.Experimental modelling of debris flow behaviour using a geotechnical centrifuge[J]. Canadian Geotechnical Journal, 2010, 47(7): 742-762.
|
[18] |
CABRERA M A, WU W.Experimental modelling of free-surface dry granular flows under a centrifugal acceleration field[J]. Granular Matter, 2017, 19(4): 78.
|
[19] |
SONG D, NG C W W, CHOI C E, et al. Influence of debris flow solid fraction on rigid barrier impact[J]. Canadian Geotechnical Journal, 2017, 54(10): 1421-1434.
|
[20] |
SONG D, CHOI C E, NG C W W, et al. Geophysical flows impacting a flexible barrier: effects of solid-fluid interaction[J]. Landslides, 2018, 15(1): 99-110.
|
[21] |
BOWMAN E T, TAKE W A, RAIT K L, et al.Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal, 2012, 49(4): 460-476.
|
[22] |
赵天龙, 陈生水, 王俊杰, 等. 堰塞坝漫顶溃坝离心模型试验研究[J]. 岩土工程学报, 2016, 38(11): 1965-1972.
(ZHAO Tian-long, CHEN Sheng-shui, WANG Jun-jie, et al.Centrifugal model tests overtopping failure of barrier dams[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1965-1972. (in Chinese)) |
[23] |
SCHOFIELD A N.Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268.
|
[24] |
SAVAGE S B, HUTTER K.The motion of a finite mass of granular material down a rough incline[J]. Journal of Fluid Mechanics, 1989, 199: 177-215.
|
[25] |
BAGNOLD R A.Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear[J]. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences, 1954, 225(1160): 49-63.
|
[26] |
IVERSON R M.The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296.
|
[27] |
IVERSON R M, GEORGE D L.Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster[J]. Géotechnique, 2016, 66(3): 175-187.
|
[28] |
BOYER F, GUAZZELLI E, POULIQUEN O.Unifying suspension and granular rheology[J]. Physical Review Letters, 2011, 107: 188301.
|
[29] |
BEEN K, JEFFERIES M G.A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
|
[30] |
NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(1): 1-21.
|
[31] |
Wood D M.Soil behaviour and critical state soil mechanics[M]. Cambridge University Press, 1990.
|
[32] |
GARNIER J, GAUDIN C, SPRINGMAN S M, et al.Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling[J]. International Journal on Physical Modelling in Geotechnics, 2007, 7(3): 1-24.
|
[33] |
BRUCKS A, ARNDT T, OTTINO J M, et al.Behavior of flowing granular materials under variable
|
[34] |
CHIKATAMARLA R, LAUE J, SPRINGMAN S M.Centrifuge scaling laws for guided free fall events including rockfalls[J]. International Journal of Physical Modelling in Geotechnics, 2006, 6(2): 15-26.
|
[35] |
CHI K, ZAKERI A, HAWLADER B. Centrifuge modeling of subaqueous and subaerial landslides impact on suspended pipelines[C]// Pan-Am CGS Conference, 2011, Toronto, Ontario,Canada.
|
[36] |
NG C W W, SONG D, CHOI C E, et al. A novel flexible barrier for landslide impact in centrifuge[J]. Géotechnique Letters, 2016, 6(3): 221-225.
|
[37] |
TAYLOR R N.Geotechnical centrifuge technology[M]. Glasgow: Blackie Academic Professional, 1995.
|
[38] |
SUTERA S P, SKALAK R.The history of Poiseuille's law[J]. Annual review of fluid mechanics, 1993, 25(1): 1-20.
|
[39] |
BRYANT S, TAKE W, BOWMAN E, et al.Physical and numerical modelling of dry granular flows under Coriolis conditions[J]. Géotechnique, 2015, 65(3): 188-200.
|
[40] |
LEI G H, SHI J Y.Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193.
|
[41] |
STANIER S A, BLABER J, TAKE W A, et al.Improved image-based deformation measurement for geotechnical applications[J]. Canadian Geotechnical Journal, 2015, 53(5): 727-739.
|
[1] | ZHANG Wenjie, WANG Shifang, YU Haisheng, LI Xibin. Influences of redox potential on leaching behaviors of arsenic from a solidified contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1039-1046. DOI: 10.11779/CJGE20230119 |
[2] | CHANG Jin, YANG He-ping, XIAO Jie, XU Yong-fu. Soil-water chemical tests and action mechanism of acid rain infiltration into expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1483-1492. DOI: 10.11779/CJGE202208013 |
[3] | WAN Jia-lei, FENG Ya-song, LI Shuang-jie, ZHOU Shi-ji, WANG Shui, DU Yan-jun. Leaching, physical and mechanical characteristics of nickel-zinc-contaminated clay solidified/stabilized by a novel steel slag-based binder subjected to wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 213-216. DOI: 10.11779/CJGE2021S2050 |
[4] | FENG Ya-song, WANG Shui, ZHOU Shi-ji, XIA Wei-yi, GE Yu-xiang, ZHONG Dao-xu, DU Yan-jun. Stability of solidified/stabilized heavy metal-contaminated clay under outdoor natural exposure and indoor standard curing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 154-157. DOI: 10.11779/CJGE2021S2037 |
[5] | WANG Fei, XU Wang-qi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. DOI: 10.11779/CJGE202010022 |
[6] | FENG Ya-song, DU Yan-jun, ZHOU Shi-ji, XIA Wei-yi. Utilization of activated steel slag to solidify/stabilize industrially heavy-metal contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 112-116. DOI: 10.11779/CJGE2018S2023 |
[7] | CHEN Wei-chang, LI Li, SHAO Ming-shen, LIANG Xing-zhou, AFOLAGBOY Lekan Olatayo. Experimental study on carbonate dissolution and erosion effect under attack of simulated sulphuric acid rain[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2058-2067. DOI: 10.11779/CJGE201711014 |
[8] | WU Hao-liang, LIU Zhao-peng, DU Yan-jun, XUE Qiang, WEI Ming-li, LI Chun-ping. Effect of acid rain on leaching characteristics of lead, zinc and cadmium- contaminated soils stabilized by phosphate-based binder: semi-dynamic leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1058-1064. DOI: 10.11779/CJGE201706011 |
[9] | WANG Zhe, DING Yao-kun, XU Si-fa, XIONG Zhuang, ZHOU Hong-li, WU Xue-hui. Semi-dynamic leaching tests on leaching properties of MPC-solidified zinc-contaminated soil under acid rain environment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 697-704. DOI: 10.11779/CJGE201704015 |
[10] | JIANG Ning-jun, DU Yan-jun, LIU Song-yu, LI Chen-yang, LI Wen-tao. Leaching behaviors of cement-based solidification/stabilization treated lead contaminated soils under effects of acid rain[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 739-744. |