• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

液化场地-群桩基础-结构体系动力响应分析—大型振动台模型试验研究

许成顺, 豆鹏飞, 杜修力, 陈苏, 李霞

许成顺, 豆鹏飞, 杜修力, 陈苏, 李霞. 液化场地-群桩基础-结构体系动力响应分析—大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001
引用本文: 许成顺, 豆鹏飞, 杜修力, 陈苏, 李霞. 液化场地-群桩基础-结构体系动力响应分析—大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001
XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, LI Xia. Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001
Citation: XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, LI Xia. Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001

液化场地-群桩基础-结构体系动力响应分析—大型振动台模型试验研究  English Version

基金项目: 国家自然科学基金面上项目(51578026); 国家自然科学基金优秀青年基金项目(51722801); 国家自然科学基金创新研究群体项目(51421005)
详细信息
    作者简介:

    许成顺(1977— ),女,博士,教授,主要从事土动力学及地下结构抗震方面的科研工作。E-mail: xuchengshun@bjut.edu.cn。

    通讯作者:

    杜修力,E-mail:duxiuli@bjut.edu.cn

  • 中图分类号: TU411.93

Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test

  • 摘要: 进行了液化场地-结构体系动力相互作用大型振动台试验,对土体和桩基的加速度反应、饱和砂土层的孔压反应等进行了测试。重点阐述了土体和群桩基础的加速度地震响应特征和饱和土体的孔压发展规律,并对土体侧向变形规律进行了分析。试验研究结果表明:0.05g拍波输入时,土体和桩基对加速度反应有着明显放大作用,土体各处孔压比增长幅度不大,土体侧向位移较小;0.3g汶川地震卧龙台地震记录输入时,桩基加速度反应规律与土体反应基本一致,土体孔压比增长明显,上部土体完全液化;土体水平侧向变形较大。本文成果可为液化场地-群桩基础动力相互作用研究做对比分析和验证数值模拟工作提供参考。
    Abstract: In this large-scale shaking table model test, the acceleration responses of soil and structures and pore water pressures and other signals are measured. The seismic responses of soil and pile group foundations, the development of pore water pressure of liquefiable soil are introduced, and the lateral deformation of soil is analyzed. The results show that when 0.05g beat wave is input, the acceleration responses of soil and pile foundation are enlarged obviously, and the pore pressure ratio increases stightly throughout the soil. Besides, the lateral displacements of soil are small. When 0.3g Wenchuan Earthquake seismic record is input, the law of acceleration response of pile foundation is basically the same as that of soil. The pore pressures rise rapidly and the soil has been liquefied, and lateral displacements of soil are large. The results of this paper are dynamic response of liquefied non-free site test in a series of large-scale shaking table tests on soil-pile group-superstructure system. The results can be used for comparative analysis and verification of numerical simulation in the future.
  • [1] 程昌钧, 胡育佳, 朱媛媛, 等. 桩基的数学建模、理论分析与计算方法[M]. 北京: 科学出版社, 2009: 1-3.
    (CHENG Chang-jun, HU Yu-jia, ZHU Yuan-yuan, et al.Mathematical modeling, theoretical analysis and calculation method of pile foundation[M]. Beijing: Science Press, 2009: 1-3. (in Chinese))
    [2] LIYANAPATHIRANA D S, POULOS H G.Seismic lateral response of piles in liquefying soil[J]. J Geotech Geoenviron Eng, 2005, 131: 1466-1479.
    [3] LIYANAPATHIRANA D S, POULOS H G.Behavior of pile groups in liquefying soil[C]// Proceedings of GeoCongress 2006: Geotechnical Engineering in the Information Technology Age. Reston, Virginia, USA: ASCE Press, 2006: 1-6.
    [4] NOVAK M, EI SHARNOUBY B.Stiffness constants of single piles[J]. J Eng, 1983, 109(7): 961-974.
    [5] EL NAGGAR M H, NOVAK M. Nonlinear analysis for dynamic lateral pile response[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(4): 233-244.
    [6] MATLOCK H.Correlation for design of lateral loaded piles in soft clay[C]// Proceedings of the 2nd Offshore Technology in Civil Engineering. Reston, Virginia, USA, 1970: 577-594.
    [7] REESE L C, COX W R, KOOP F D.Field testing and analysis of laterally loaded piles in stiff clay[C]// Proceedings of the 7th Offshore Technology in Civil Engineering. Reston, Virginia, USA, 1997: 245-256.
    [8] 黄茂松, 吴志明, 任青, 等. 层状地基中群桩的水平振动特性[J]. 岩土工程学报, 2007, 29(1): 32-38.
    (HUANG Mao-song, WU Zhi-ming, REN Qing, et al.Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38. (in Chinese))
    [9] 唐亮. 液化场地桩-土动力相互作用p-y曲线模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    (TANG Liang.p-y model of dynamic pile-soil interaction in liquefying ground[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese))
    [10] HU Yu-jia, ZHU Yuan-yuan, CHENG Chang-jun, et al.EFGM for nonlinear mechanical behaviors of single pile and pile group[C]// Proceedings of the 5th International Conference on Nonlinear Mechanics. Shanghai: Shanghai University Press, 2007: 429-437.
    [11] 王建华, 陆建飞. 层状地基中考虑固结和流变的垂直单桩的理论分析[J]. 水利学报, 2001, 32(4): 57-61.
    (WANG Jian-hua, LU Jian-fei.Theoretical study on single pile in layered saturated soil considering the consolidation and theology[J]. Journal of Hydraulic Engineering, 2001, 32(4): 57-61. (in Chinese))
    [12] MOTAMED R, TOWHATA I, HONDA T.Pile group response to liquefaction-induced lateral spreading: E-defense large shake table test[J]. Soil Dynamics and Earthquake Engineering, 2013, 51(3): 35-46.
    [13] TABATA K, SATO M.E-defense shaking table test on the behavior of liquefaction-induced lateral spreading of large-scale model ground with a pile-foundation structure behind quay wall[C]// International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2010: 1-6.
    [14] MOTAMED R, TOWHATA I, HONDA T, et al.Behavior of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in E-defense project[J]. Soils and Foundations, 2009, 49(3): 459-475.
    [15] MOTAMED R, TOWHATA I, TOWHATA I.Shaking table tests on pile groups behind quay wall model undergoing lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineeirng, ASCE, 2010, 136(3): 477-489.
    [16] HAERI S M, KAVAND A, RAHMANI I, et al.Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing[J]. Soil Dynamics and Earthquake Engineering, 2012, 38: 25-45.
    [17] 吕西林, 陈跃庆, 陈波, 等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29.
    (LÜ Xi-lin, CHEN Yue-qing, CHEN Bo, et al.Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 20-29. (in Chinese))
    [18] LING Xian-zhang, GAO Xia, TANG Liang, et al.Effect of shaking intensity on interactive behavior of soil-pile group foundations in liquefiable soil during shaking table tests[C]// International Efforts in Lifeline Earthquake Engineering, 2013: 616-623.
    [19] TANG Liang, LING Xian-zhang, XU Peng-ju, et al.Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(1): 39-50.
    [20] 倪克闯. 成层土中桩基与复合地基地震作用下工作性状振动台试验研究[D]. 北京: 中国建筑科学研究院, 2013.
    (NI Ke-chuang.Shaking table test of pile and composite foundations’ dynamic behavior in layered soils subjected to earthquake excitation[D]. Beijing: China Academy of Building Research, 2013. (in Chinese))
    [21] BENNETT V, ZEGHAL M, ABDOUN T, et al.Wireless shape-acceleration array system for local identification of soil and soil structure systems[J]. Journal of the Transportation Research Board, 2007: 60-66.
  • 期刊类型引用(29)

    1. 马乐,李云,陈晨文. 上软下硬地层CSM整体式止水帷幕施工关键技术. 施工技术(中英文). 2024(11): 97-102 . 百度学术
    2. 陈伟. 复杂富水地层地铁深大基坑渗漏治理技术研究. 施工技术(中英文). 2024(13): 109-114 . 百度学术
    3. 孙立光,朱颖,时刚,王瑜,刘攀,郜新军,朱超杰. 饱和地基中劲芯水泥土墙隔振的二维BEM-FEM耦合分析. 世界地震工程. 2024(04): 164-178 . 百度学术
    4. 任路,秦超,向虎,杨天成,李荣华. 武汉某高层建筑深基坑设计与施工. 施工技术(中英文). 2023(01): 119-124 . 百度学术
    5. 代兴云,应卫超,孙海明. 深基坑承压水组合式处理措施的研究及应用. 城市道桥与防洪. 2023(01): 178-182+23 . 百度学术
    6. 刘树佳. 上海地区特深圆形竖井开挖承压水控制技术及效果. 水资源与水工程学报. 2023(01): 127-134 . 百度学术
    7. 魏斌,刘长斌,康建国,刘畅,杨宇航. 富水软土地区超深基坑CSM施工技术研究. 建筑施工. 2023(01): 18-21 . 百度学术
    8. 刘鹭. 双轮铣深层搅拌工法在复杂城市地下空间开发的应用研究. 福建建设科技. 2023(03): 41-44 . 百度学术
    9. 李成巍,李伟,梁志荣. 紧临越江隧道软土地层深大基坑工程设计与实践. 福建建设科技. 2023(03): 37-40 . 百度学术
    10. 古伟斌,蔡强,郭佰良. CSM双轮铣搅墙特点及其在基坑支护止水帷幕的应用. 广东土木与建筑. 2023(05): 83-86 . 百度学术
    11. 黄开勇,梁志荣,魏祥. 双排型钢等厚水泥土墙在深大基坑中的应用分析. 建筑结构. 2023(S1): 2902-2907 . 百度学术
    12. 王川. 深厚粉细砂地层深搅铣形成防渗墙施工分析. 工程技术研究. 2023(11): 57-59 . 百度学术
    13. 董晓斌,苏定立,胡贺松,李翔,唐孟雄,谢丁,谢小荣. 基于CSM工法的止水帷幕施工技术及设备研究现状. 广州建筑. 2023(06): 55-58 . 百度学术
    14. 郭建飞. 复杂环境下深基坑围护设计施工方法研究. 建设科技. 2022(11): 102-104 . 百度学术
    15. 杨洪杰,崔永高,孙建军. 上海第(9)层减压降水悬挂式隔水帷幕深度的设计方法. 建筑施工. 2022(08): 1758-1760 . 百度学术
    16. 尤田,郭佳嘉. 超深锚碇基础SMC工法槽壁力学性能研究. 世界桥梁. 2022(06): 80-85 . 百度学术
    17. 张芳,韩林芳,赵怡琳,桑运龙,刘学增,高尚,杨研. 富水地区深基坑封底榫槽关键参数研究. 隧道建设(中英文). 2022(11): 1913-1920 . 百度学术
    18. 魏祥,梁志荣,罗玉珊. 软土地区临江深大基坑工程地下水综合控制技术实践. 上海国土资源. 2022(04): 39-43+66 . 百度学术
    19. 李万全,刘德港,田万君,李永贺. 提高水泥土搅拌墙在岩溶地质中入岩速率的研究. 建筑技术开发. 2022(24): 123-125 . 百度学术
    20. 李汉龙,李学军,曾开华,崔猛,刘海林. CSM工法在深厚饱和砂土地基的现场试验研究. 南昌工程学院学报. 2021(01): 45-50 . 百度学术
    21. 李新,黄健,樊海元,陶金海,李昊雨,杨凡林. 复杂场地条件下深基坑围护技术及工程应用研究. 工程建设与设计. 2021(13): 36-38+47 . 百度学术
    22. 丁昊. TRD工法和CSM工法在上海地区超深基坑工程止水帷幕的应用. 上海建设科技. 2021(04): 49-50+53 . 百度学术
    23. 邵勇,李光诚,帅红岩,张玉山. 超深止水帷幕在武汉长江Ⅰ级阶地冲积相基坑支护工程中的选取和应用. 资源环境与工程. 2021(06): 882-886 . 百度学术
    24. 李雄威,何亮,黄开林,秦羽. 承压水条件下基坑抗突涌安全措施分析. 土工基础. 2020(05): 602-606+611 . 百度学术
    25. 蔡忠祥,岳建勇,胡耘. CSM工法等厚度水泥土搅拌墙在紧邻既有建筑深基坑工程中的应用. 四川建筑科学研究. 2020(S1): 32-40 . 百度学术
    26. 冯晓腊,崔德山,熊宗海,莫云. 武汉软土地层特点及深基坑降水研究新进展. 四川建筑科学研究. 2020(S1): 9-17 . 百度学术
    27. 陈用伟,罗仕恒. 双排桩支护结构在直立高边坡中的应用. 广东土木与建筑. 2020(12): 25-28 . 百度学术
    28. 刘动. 深圳地区深基坑开挖地下水控制研究. 勘察科学技术. 2020(06): 43-48 . 百度学术
    29. 陈佳培,唐力. CSM等厚度水泥土搅拌墙在长江漫滩地质上的应用. 河南科技. 2019(28): 83-85 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  315
  • HTML全文浏览量:  17
  • PDF下载量:  393
  • 被引次数: 33
出版历程
  • 收稿日期:  2018-04-07
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回