• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑砂土颗粒破碎的柱孔扩张问题弹塑性分析

郑金辉, 齐昌广, 王新泉, 单艳玲, 赖文杰, 王梁志

郑金辉, 齐昌广, 王新泉, 单艳玲, 赖文杰, 王梁志. 考虑砂土颗粒破碎的柱孔扩张问题弹塑性分析[J]. 岩土工程学报, 2019, 41(11): 2156-2164. DOI: 10.11779/CJGE201911023
引用本文: 郑金辉, 齐昌广, 王新泉, 单艳玲, 赖文杰, 王梁志. 考虑砂土颗粒破碎的柱孔扩张问题弹塑性分析[J]. 岩土工程学报, 2019, 41(11): 2156-2164. DOI: 10.11779/CJGE201911023
ZHENG Jin-hui, QI Chang-guang, WANG Xin-quan, SHAN Yan-ling, LAI Wen-jie, WANG Liang-zhi. Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2156-2164. DOI: 10.11779/CJGE201911023
Citation: ZHENG Jin-hui, QI Chang-guang, WANG Xin-quan, SHAN Yan-ling, LAI Wen-jie, WANG Liang-zhi. Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2156-2164. DOI: 10.11779/CJGE201911023

考虑砂土颗粒破碎的柱孔扩张问题弹塑性分析  English Version

基金项目: 浙江省自然科学基金项目(LY18E080010,LQ18E080006); 宁波市自然科学基金项目(2017A610317)
详细信息
    作者简介:

    郑金辉(1994— ),男,硕士研究生,主要从事桩基础、岩土物理模拟试验方面的研究工作。E-mail: zhengjinhui2838@live.com。

    通讯作者:

    齐昌广,E-mail:qichangguang@163.com

  • 中图分类号: TU43

Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand

  • 摘要: 目前对砂土中圆孔扩张问题的研究均未考虑到砂土颗粒的破碎以及剪胀特性,且为了方便后续求解,很多学者对剪应力,剪切模量等计算参数做了简化,使得最终的求解结果无法准确反映实际情况。针对上述问题,采用考虑颗粒破碎和剪胀特性的砂土临界本构模型,在塑性区联合相关流动法则和拉格朗日分析法,将传统的欧拉描述下的柱孔扩张问题转换为基于拉格朗日描述的带初值的一阶非线性常微分方程组,最终通过数值方法得到砂土中柱孔扩张问题的半解析精确解,并通过算例分析了土体初始应力对扩孔结果的影响。结果表明,颗粒破碎和初始应力对孔周应力和塑性区半径影响巨大,两者共同作用使得土体在扩孔期间表现出不同的剪胀/剪缩特性;此外,高初始应力下的孔周土体在扩孔期间难以到达临界状态。
    Abstract: The current studies on the cavity expansion in sand have not considered the breakage and dilatancy of sand particles. In order to facilitate the subsequent calculation, many scholars have simplified the calculation parameters such as shear stress and shear modulus, so the final results do not reflect the actual situation accurately. In response to the above problems, a critical constitutive model for sand considering particle breakage and dilatancy is used. Employing the associate flow rules and the Lagrangian analysis method in the plastic zone, the cylindrical cavity expansion problem described by the traditional Euler description is converted into a first-order nonlinear ordinary differential equation with the initial values based on the Lagrangian description. Finally, the semi-analytical exact solution to the cylindrical cavity expansion problem in sand is obtained by the numerical method, and the influences of the initial stress on the cavity expansion results are analyzed through an example. The results show that the particle breakage and the initial stress have great influences on the cavity stress and the radius of the plastic zone. The combination of particle breakage and initial stress causes the soil to exhibit different dilatancy characteristics during cavity expansion. In addition, the sand under high initial stresses is difficult to reach the critical state during cavity expansion.
  • [1] VESIC A S.Expansion of cavity in infinite soil mass[J]. Journal of Soil Mechanics Foundation Division, American Socialy of Civil Engineering, 1972, 98(3): 265-289.
    [2] CAETER J P, BOOKER J R, YEUNG S K.Cavity expansion in cohesive frictional soils[J]. Géotechnique, 1986, 36(3): 349-358.
    [3] YU H S, HOULSBY G T.Finite cavity expansion in dilatant soils: loading analysis[J]. Géotechnique, 1991, 41(2): 173-183.
    [4] SHUTTLE D.Cylindrical cavity expansion and contraction in Tresca soil[J]. Géotechnique, 2007, 57(3): 305-308.
    [5] COLLINS I F, YU H S.Undrained cavity expansions in critical state soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(7): 489-516.
    [6] CHEN S L, ABOUSLEIMAN Y N.Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam clay soil[J]. Géotechnique, 2012, 62(5): 447-456.
    [7] VRAKAS A, ANAGNOSTOU G.A finite strain closed-form solution for the elastoplastic ground response curve in tunnelling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38: 1131-1148.
    [8] MO P Q, YU H S.Drained cavity expansion analysis with a unified state parameter model[J]. Canadian Geotechnical Journal, 2018, 55(7): 1029-1040.
    [9] COLLINS I F, PENDER M J, WANG, Y.Cavity expansion in sands under drained loading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(1): 3-23.
    [10] COLLINS I F, STIMPSON J R.Similarity solutions for drained and undrained cavity expansions in soils[J]. Géotechnique, 1994, 44(1): 21-34.
    [11] CAO L F, TEH C I, CHANG M F.Undrained cavity expansion in modified Cam clay I:theoretical analysis[J]. Géotechnique, 2001, 51(4): 323-334.
    [12] 肖昭然, 张昭, 杜明芳. 饱和土体小孔扩张问题的弹塑性解析解[J]. 岩土力学, 2004, 25(9): 1373-1378.
    (XIAO Zhao-ran, ZHANG Zhao, DU Ming-fang.An elastoplastic closed-form approach of cavity expansion in saturated soil based on modified Cam clay model[J]. Rock and Soil Mechianics, 2004, 25(9): 1373-1378. (in Chinese))
    [13] 胡伟, 刘明振. 非饱和土中球形孔扩张的弹塑性分析[J]. 岩土工程学报, 2006, 28(10): 1292-1297.
    (HU Wei, LIU Ming-zhen.Elastic-plastic solution of expansion of sphere cavity in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1292-1297. (in Chinese))
    [14] 宋勇军, 胡伟, 王德胜, 等. 基于修正剑桥模型的挤密桩挤土效应分析[J]. 岩土力学, 2011, 32(3): 811-814.
    (SONG Yong-jun, HU Wei, WANG De-sheng, et al.Analysis of squeezing effect of compaction piles based on modified Cam-clay model[J]. Rock and Soil Mechianics, 2011, 32(3): 811-814. (in Chinese))
    [15] 李镜培, 李林, 孙德安, 等. 饱和软土地层静压沉桩阻力理论研究[J]. 岩土工程学报, 2015, 37(8): 1454-1461.
    (LI Jing-pei, LI Lin, SUN De-an, et al.Theoretical study on sinking resistance of jacked piles in saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1454-1461. (in Chinese))
    [16] 李镜培, 唐剑华, 李林, 等. 饱和黏土中柱孔三维弹塑性扩张机制研究[J]. 岩石力学与工程学报, 2016, 35(2): 378-386.
    (LI Jing-pei, TANG Jian-hua, LI Lin, et al.Mechanism of three dimensional elastic-plastic expansion of cylindrical cavity in saturated clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 378-386. (in Chinese))
    [17] 李镜培, 唐剑华, 张亚国, 等. 饱和粘土中球孔扩张问题弹塑性解析[J]. 哈尔滨工业大学学报, 2014, 46(12): 71-77.
    (LI Jing-pei, TANG Jian-hua, ZHANG Ya-guo, et al.Elastic-plastic solution of sphere cavity expansion in saturated clay[J]. Journal of Harbin Institute of Technology, 2014, 46(12): 71-77. (in Chinese))
    [18] 李林, 李镜培, 孙德安, 等. 剪胀性砂土中球孔扩张弹塑性解[J]. 岩土工程学报, 2017, 39(8): 1453-1460.
    (LI Lin, LI Jing-pei, SUN De-an, et al.Elasto-plastic solution to expansion of a spherical cavity in dilatant sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1453-1460. (in Chinese))
    [19] RUSSELL A R, KHALILI N.Drained cavity expansion in sands exhibiting particle crushing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(4): 323-340.
    [20] 蒋明镜, 孙渝刚. 考虑砂土颗粒破碎的圆孔扩张半解析分析[J]. 岩土工程学报, 2009, 31(11): 1645-1651.
    (JIANG Ming-jing, SUN Yu-gang.Semi-analytical solution to cavity expansion in crushable sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1645-1651. (in Chinese))
    [21] JIANG M J, SUN Y G.Cavity expansion analyses of crushable granular materials with state-dependent dilatancy[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(6): 723-742.
    [22] KONRAD J M.Sand state from cone penetrometer tests: a framework considering grain crushing stress[J]. Géotechnique, 1998, 48(2): 201-215.
    [23] 蒋明镜. 用于触探试验分析的粒状材料本构模型之展望[J]. 岩土工程学报, 2007, 29(9): 1281-1288.
    (JIANG Ming-jing.Main features of future constitutive models for granular materials in penetration analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1281-1288. (in Chinese))
    [24] YAO Y P, YAMAMOTO H, WANG N D.Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603-608.
    [25] 王乃东, 姚仰平. 粒状材料颗粒破碎的力学特性描述[J]. 工业建筑, 2008, 38(8): 17-20.
    (WANG Nai-dong, YAO Yang-ping.Mechanical description for granular material exhibiting particle crushing[J]. Industrial Construction,2008, 38(8): 17-20. (in Chinese))
    [26] 姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151.
    (YAO Yang-ping, HOU Wei, LUO Ting.Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese))
    [27] WANG N D, YAO Y P.A generalized constitutive model considering sand crushing[J]. Soils and Foundations, 2015, 48(2): 12-15.
    [28] 刘萌成, 高玉峰, 黄晓明. 考虑强度非线性的堆石料弹塑性本构模型研究[J]. 岩土工程学报, 2005, 27(3): 294-298.
    (LIU Meng-cheng, GAO Yu-feng, HUANG Xiso-ming.Study on elasto-plastic constitutive model of rockfills with nonlinear strength characteristics[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 294-298. (in Chinese))
  • 期刊类型引用(12)

    1. 何长江. 基于最小势能原理的深基坑吊脚墙变形研究. 江西建材. 2024(02): 71-73 . 百度学术
    2. 金国龙,张永来,李鸿桥. 地下连续墙新型刚性接头设计与研究. 建筑施工. 2024(05): 629-631 . 百度学术
    3. 罗会东,周佳奇,冯志军,叶涛,薛高升,周腾龙,曹安乐. 地下连续墙刚性排插接头技术研究. 施工技术(中英文). 2024(16): 33-38 . 百度学术
    4. 夏欢,曾旭涛,付金磊,朱俊涛,屈成. 超深异型排插式刚性接头地连墙工艺试验研究. 地下空间与工程学报. 2024(06): 2020-2033 . 百度学术
    5. 陈亮,颜书法,万昱. 跨孔电法探测地下连续墙渗漏隐患的应用研究. 岩土工程学报. 2023(08): 1605-1614 . 本站查看
    6. 姚云龙,刘鑫,古剑,王智健,倪嘉辉. 地下连续墙钢箱接头力学性能研究. 三峡大学学报(自然科学版). 2022(04): 57-63 . 百度学术
    7. 陈平,黄海涛,安刚建,周雄好,罗支贵,蔡虹,袁正璞. 软弱地层深大基坑富水特性及组合支护控制. 科学技术与工程. 2022(15): 6278-6290 . 百度学术
    8. 汪洵. 地下连续墙在含水地层基坑开挖中的应用研究. 地下水. 2022(06): 40-42 . 百度学术
    9. 田德胜. 分节预制地下连续墙围护结构加固施工技术. 粉煤灰综合利用. 2022(05): 22-28 . 百度学术
    10. 罗震刚,周晨,王晶,陈伟,马栋魁,沈才华. 地连墙兼作水池壁板的接头质量控制参数及厚度优化研究. 河南科学. 2020(05): 749-754 . 百度学术
    11. 刘颖,相斌辉,扶名福. 沿海地区复杂地质条件下三角形深大基坑变形实测分析与数值模拟研究. 水资源与水工程学报. 2020(05): 207-212+217 . 百度学术
    12. 杜昌隆,赵强,薛洪松. 洞内狭小空间中地下连续墙施工关键技术. 市政技术. 2020(06): 187-190+194 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  251
  • HTML全文浏览量:  7
  • PDF下载量:  178
  • 被引次数: 28
出版历程
  • 收稿日期:  2018-12-20
  • 发布日期:  2019-11-24

目录

    /

    返回文章
    返回