• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

单轴压缩砂岩细观裂纹动态演化特征试验研究

王春来, 侯晓琳, 李海涛, 张书江, 陶志刚

王春来, 侯晓琳, 李海涛, 张书江, 陶志刚. 单轴压缩砂岩细观裂纹动态演化特征试验研究[J]. 岩土工程学报, 2019, 41(11): 2120-2125. DOI: 10.11779/CJGE201911018
引用本文: 王春来, 侯晓琳, 李海涛, 张书江, 陶志刚. 单轴压缩砂岩细观裂纹动态演化特征试验研究[J]. 岩土工程学报, 2019, 41(11): 2120-2125. DOI: 10.11779/CJGE201911018
WANG Chun-lai, HOU Xiao-lin, LI Hai-tao, ZHANG Shu-jiang, TAO Zhi-gang. Experimental investigation on dynamic evolution characteristics of micro-cracks for sandstone samples under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2120-2125. DOI: 10.11779/CJGE201911018
Citation: WANG Chun-lai, HOU Xiao-lin, LI Hai-tao, ZHANG Shu-jiang, TAO Zhi-gang. Experimental investigation on dynamic evolution characteristics of micro-cracks for sandstone samples under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2120-2125. DOI: 10.11779/CJGE201911018

单轴压缩砂岩细观裂纹动态演化特征试验研究  English Version

基金项目: 国家重点研发计划项目(2017YFC0804201); 国家自然科学基金项目(51574246); 孙越崎杰出学者项目(800015Z1138); 中央高校基本科研业务费专项资金项目(2011QZ01)
详细信息
    作者简介:

    王春来(1976— ),男,教授,博士生导师,主要从事岩爆预警与控制方面研究。E-mail:tswcl@126.com。

  • 中图分类号: TU45

Experimental investigation on dynamic evolution characteristics of micro-cracks for sandstone samples under uniaxial compression

  • 摘要: 岩石细观裂纹的动态演化特征作为岩石破坏的重要信息,其研究对于分析岩爆的孕育过程及预测岩石动力灾害发生有着重要意义。采用应力分析和声发射参数方法,研究了砂岩在单轴压缩条件下的细观裂纹的强度动态演化特征。试验结果表明,应力与砂岩细观裂纹扩展诱发声发射(AE)事件的强度特征有较好的阶段性变化规律,将峰前裂纹动态演化划分为三个阶段。进一步分析裂纹的类型特征,提出三阶段四维演化过程分析方法。细观裂纹多为张拉型,随着时间的增加,细观裂纹向剪切型裂纹转变,裂纹数量迅速增加,裂纹强度逐渐增大。提出将第三阶段AE事件出现的高强度、高RA、低AF特征作为砂岩破裂失稳的定性预警条件。通过矩张量反演对比分析了的细观裂纹数量和类型的动态演化。
    Abstract: The dynamic evolution characteristics of micro-cracks are the important information of rock failure for their significance in analyzing the failure process of rockburst and predicting the rock dynamic hazard. The uniaxial compression tests are conducted on sandstones, while their stress and the intensity characteristics of acoustic emission (AE) are analyzed to study the dynamic evolution process of crack. The results show that the stress variation and the intensity characteristics of AE events have a consistent segmented transformation pattern, which is used to divide the evolution process into three phases. A four-dimensional evolution method is proposed based on the further analysis of the characteristics of crack type. The micro-cracks are mostly tensile. With the increase of time, the micro-cracks change to shear-type cracks, the number of the cracks increases rapidly, and their intensity increases gradually. It is proposed that the AE events occurring with high intensity, high RA and low AF characteristics in the third phase are used as the qualitative prediction of rock failure. By comparing the inversion results of the moment tensors, the dynamic evolution characteristics of the micro-cracks are obtained.
  • [1] MANGUAL J, ELBATANOUNY M K, ZIEHL P, et al.Acoustic-emission-based characterization of corrosion damage in cracked concrete with prestressing strand[J]. Aci Materials Journal, 2013, 110(1): 89-98.
    [2] BEHNIA A, CHAI H K, SHIOTANI T.Advanced structural health monitoring of concrete structures with the aid of acoustic emission[J]. Construction & Building Materials, 2014, 65(4): 282-302.
    [3] WANG Chun-lai.Identification of early-warning key point for rockmass instability using acoustic emission/microseismic activity monitoring[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 71(5): 171-175.
    [4] WANG Chun-lai.Evolution, monitoring and predicting models of rockburst[M]. Singapore: Springer, 2018.
    [5] 王笑然, 王恩元, 刘晓斐, 等. 裂隙砂岩裂纹扩展声发射响应及速率效应研究[J]. 岩石力学与工程学报, 2018, 37(6): 1446-1458.
    (WANG Xiao-ran, WANG En-yuan, LIU Xiao-fei, et al.Macro-crack propagation process and corresponding AE behaviors of fractured sandstone under different loading rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1446-1458. (in Chinese))
    [6] MORADIAN Z, EINSTEIN H H, BALLIVY G.Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals[J]. Rock Mechanics & Rock Engineering, 2016, 49(3): 785-800.
    [7] 刘泉声, 魏莱, 雷峰, 等. 砂岩裂纹起裂损伤强度及脆性参数演化试验研究[J]. 岩土工程学报, 2018, 40(10): 1782-1789.
    (LIU Quan-sheng, WEI Lai, LEI Feng, et al.Experimental study on damage strength of crack initiation and evaluation of brittle parameters of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1782-1789. (in Chinese))
    [8] 丛宇, 冯夏庭, 郑颖人, 等. 不同应力路径大理岩声发射破坏前兆的试验研究[J]. 岩土工程学报, 2016, 38(7): 1193-1201.
    (CONG Yu, FENG Xia-ting, ZHENG Ying-ren, et al.Experimental study on acoustic emission failure precursors of marble under different stress paths[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1193-1201. (in Chinese))
    [9] OHTSU M, ISODA T, TOMODA Y.Acoustic emission techniques standardized for concrete structures[J]. Journal of Acoustic Emission, 2007, 25: 21-32.
    [10] 周子龙, 李国楠, 宁树理, 等. 侧向扰动下高应力岩石的声发射特性与破坏机制[J]. 岩石力学与工程学报, 2014, 33(8): 1720-1728.
    (ZHOU Zi-long, LI Guo-nan, NING Shu-li, et al.Acoustic emission characteristics and failure mechanism of high-stressed rocks under lateral disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1720-1728. (in Chinese))
    [11] 顾义磊, 王泽鹏, 李清淼, 等. 页岩声发射RA值及其分形特征的试验研究[J]. 重庆大学学报, 2018, 41(2): 78-86.
    (GU Yi-lei, WANG Ze-peng, LI Qing-miao, et al.Laboratory study on RA value fractual feature of shale acoustic emission under conventional triaxial compression[J]. Journal of Chongqing University, 2018, 41(2): 78-86. (in Chinese))
    [12] OHTSU M.Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test[J]. Journal of Geophysical Research, 1991, 96(B4): 6211-6221.
    [13] 吴顺川, 黄小庆, 陈钒, 等. 岩体破裂矩张量反演方法及其应用[J]. 岩土力学, 2016, 37(增刊1): 1-18.
    (WU Shun-chuan, HUANG Xiao-qing, CHEN Fan, et al.Moment tensor inversion of rock failure and its application[J]. Rock and Soil Mechanics, 2016, 37(S1): 1-18. (in Chinese))
    [14] GROSSE C U, FINCK F.Quantitative evaluation of fracture processes in concrete using signal-based acoustic emission techniques[J]. Cement & Concrete Composites, 2006, 28(4): 330-336.
    [15] REINHARDT H W, XU S.Experimental determination of KIIC of normal strength concrete[J]. Materials & Structures, 1998, 31(5): 296-302.
    [16] AGGELIS D G.Classification of cracking mode in concrete by acoustic emission parameters[J]. Mechanics Research Communications, 2011, 38(3): 153-157.
    [17] ZANG A, WAGNER F C, STANCHITS S, et al.Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads[J]. Geophysical Journal International, 2010, 135(3): 1113-1130.
    [18] 张鹏海. 基于声发射时序特征的岩石破裂前兆规律研究[D]. 沈阳: 东北大学, 2015: 44-48.
    (ZHANG Peng-hai.Study on precursory law prior to rock failure based on acoustic emission time order[D]. Shenyang: Northeastern University, 2015: 44-48. (in Chinese))
    [19] COMMITTEE R T.Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete[J]. Materials & Structures, 2010, 43(9): 1177-1181.
    [20] ALDAHDOOH M A A, BUNNORI N M. Crack classification in reinforced concrete beams with varying thicknesses by mean of acoustic emission signal features[J]. Construction and Building Materials, 2013, 45: 282-288.
  • 期刊类型引用(17)

    1. 任连伟,王书彪,孔纲强,杨权威,邓岳保. 综合管廊始发井能源支护桩热力响应现场试验. 岩土力学. 2025(02): 573-581+612 . 百度学术
    2. 吴行州. 基坑围护桩作用下地层支护应力分析及应用. 城市轨道交通研究. 2024(03): 125-129+134 . 百度学术
    3. 赵鹏,张东海,李晓昭,张古彬,寇亚飞,高蓬辉. 基于p阶线性模型的地埋管换热器流体温度分布研究. 太阳能学报. 2024(06): 51-59 . 百度学术
    4. 马奇杰,周超. 非对称循环温度荷载下2×2能源群桩倾斜性状离心机试验研究. 岩土工程学报. 2024(10): 2158-2165 . 本站查看
    5. 唐丽云,邵海涛,唐华明,邱培勇,杜晓奇,张蕾,彭惠. 寒区道路桥梁融雪除冰技术研究综述. 中外公路. 2024(05): 25-38 . 百度学术
    6. 谢金利,覃英宏,李颖鹏,蒙相霖,谭康豪,张星月. 能源桩传热特性与热-力响应研究综述. 土木与环境工程学报(中英文). 2023(01): 155-166 . 百度学术
    7. 刘春阳,方鹏飞,张日红,谢新宇,娄扬,张秋善,朱大勇. 考虑间歇比的地热能源桩热-力性能试验研究. 浙江大学学报(工学版). 2023(03): 562-572 . 百度学术
    8. 周杨,孔纲强,李俊杰. 夏季工况下扩底能量桩单桩热力学响应分析. 中国公路学报. 2023(05): 65-74 . 百度学术
    9. 韩志攀,贾新聪,王晓超,牛彦平. 建筑墙体碳排放优化及减碳分析. 建筑结构. 2023(S1): 2356-2360 . 百度学术
    10. 陈玉,孔纲强,孟永东,王乐华,刘红程. 间歇与持续加热下含承台能量桩基础现场试验. 深圳大学学报(理工版). 2022(01): 75-84 . 百度学术
    11. 陈树森,赵蕾. 能源群桩与单桩热-力学响应特性对比分析. 地下空间与工程学报. 2022(03): 788-800 . 百度学术
    12. 吕成钊. 四种保温墙体的动态热响应特性测试. 建筑节能(中英文). 2022(08): 48-51 . 百度学术
    13. 任连伟,韩志攀,霍继炜,高宇甲. 桩顶约束下桥梁大直径能量桩热力响应现场试验. 防灾减灾工程学报. 2022(05): 937-944+960 . 百度学术
    14. 陈鑫,孔纲强,刘汉龙,江强,杨挺. 桥面融雪除冰能量桩热泵系统换热效率现场试验. 中国公路学报. 2022(11): 107-115 . 百度学术
    15. 张精兵,杨军兵,肖勇,海迪,陈智. 深层埋管式能源支护桩埋管形式与换热特性研究. 建筑结构. 2022(S2): 2515-2522 . 百度学术
    16. 任连伟,任军洋,孔纲强,刘汉龙. 冷热循环下PHC能量桩热力响应和承载性能现场试验. 岩土力学. 2021(02): 529-536+546 . 百度学术
    17. 孟甲. 钢管桩单桩涂料防腐施工质量管控方式探讨. 珠江水运. 2021(05): 59-60 . 百度学术

    其他类型引用(17)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 34
出版历程
  • 收稿日期:  2019-01-06
  • 发布日期:  2019-11-24

目录

    /

    返回文章
    返回