• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于特征滑动面的横观各向同性土强度特性研究

路德春, 张君鸿, 梁靖宇, 杜修力

路德春, 张君鸿, 梁靖宇, 杜修力. 基于特征滑动面的横观各向同性土强度特性研究[J]. 岩土工程学报, 2019, 41(11): 2000-2008. DOI: 10.11779/CJGE201911004
引用本文: 路德春, 张君鸿, 梁靖宇, 杜修力. 基于特征滑动面的横观各向同性土强度特性研究[J]. 岩土工程学报, 2019, 41(11): 2000-2008. DOI: 10.11779/CJGE201911004
LU De-chun, ZHANG Jun-hong, LIANG Jing-yu, DU Xiu-li. Strength properties of transversely isotropic soils based on characteristic mobilized plane[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2000-2008. DOI: 10.11779/CJGE201911004
Citation: LU De-chun, ZHANG Jun-hong, LIANG Jing-yu, DU Xiu-li. Strength properties of transversely isotropic soils based on characteristic mobilized plane[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2000-2008. DOI: 10.11779/CJGE201911004

基于特征滑动面的横观各向同性土强度特性研究  English Version

基金项目: 国家自然科学基金项目(51778026,51421005,51538001, U1839201); 北京市自然科学基金项目(8161001)
详细信息
    作者简介:

    路德春(1977— ),男,教授,博士生导师,主要从事岩土材料的力学特性与本构理论、岩土地震工程等方面的教学和科研工作。E-mail:dechun@bjut.edu.cn。

  • 中图分类号: TU43

Strength properties of transversely isotropic soils based on characteristic mobilized plane

  • 摘要: 滑动面的概念旨在基于材料内摩擦,从几何与物理机制的角度来理解土体破坏的机理。基于特征应力的概念,提出了二维应力条件下特征滑动面,并推导得出特征滑动面与应力Mohr圆相对应的破坏应力条件。基于现有对横观各向同性土体强度特性的认识,并结合大主应力、沉积面法线以及特征滑动面法线之间的相对位置关系,将微观结构张量投影到特征滑动面与沉积面的相对位置向量上,推导得出横观各向同性土体的特征强度参数及其破坏条件。利用所提破坏条件对横观各向同性土体的强度方向性效应进行分析,并对照分析了沉积面法线与滑动面法线夹角ζ和沉积面法线与大主应力夹角δ对破坏条件的影响规律。更进一步利用开发的真三轴仪器的制样模具,并结合冷冻法,制作不同沉积面角度的试样并进行了真三轴试验。利用试验结果与文献中试验数据对所提破坏条件进行对比分析,验证了文中对横观各向同性土体强度特性的新认识。
    Abstract: Based on the internal friction of materials, the concept of the mobilized plane aims at revealing the mechanism of soil failure from the perspective of geometrical and physical mechanisms. With the characteristic stress concept, the characteristic mobilized plane under two-dimensional stress conditions is put forward, and the failure stress conditions of materials on the characteristic mobilized plane and those corresponding to the stress Mohr circle are derived. In addition, based on the existing understandings on the strength characteristics of the transverse isotropic soils, and also the relative positions among the major principal stress, the normal of the bedding plane and the normal of the characteristic mobilized plane, the characteristic strength parameter, as well as the failure stress conditions, are proposed by projecting the microstructure tensor into the relative orientation tensor between the characteristic mobilized plane and the bedding plane. The orientation effect of the bedding plane is also analyzed on the basis of the proposed failure condition. The correspondences of the relative orientation angle ζ between the bedding plane and the characteristic mobilized plane and the direction angle δ between the bedding plane and the major principal stress, as well as the effects of ζ and δ, are also analyzed. By using the sample preparation mould developed for the true triaxial tests with the freezing method, the samples with different bedding plane angles are prepared and used to carry out triaxial compression tests. The understanding and proposed failure condition for the failure of the transverse isotropic soils are verified by the predicted test results in this paper and in the literatures.
  • [1] 童朝霞, 周少鹏, 姚仰平, 等. 测定各向异性砂土抗剪强度特性的新型直剪装置及初步应用[J]. 岩石力学与工程学报, 2012, 31(12): 2579-2584.
    (TONG Zhao-xia, ZHOU Shao-peng, YAO Yang-ping, et al.An improved direct shear apparatus for shear strength of anisotropic sands and its primary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2579-2584. (in Chinese))
    [2] LADE P V, RODRIGUEZ N M, VAN DYCK E J. Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2014, 140(2): 1-12.
    [3] YANG L T, LI X, YU H S, et al.A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding[J]. Acta Geotechnica, 2016, 11(5): 1111-1129.
    [4] LAM W, TATSUOKA F.Effects of initial anisotropic fabric and δ2 on strength and deformation characteristics of sand[J]. Soils and Foundations, 1988, 28(1): 89-106.
    [5] GUO P.Modified direct shear test for anisotropic strength of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134(9): 1311-1318.
    [6] TONG Z X, FU P C, ZHOU S P, et al.Experimental investigation of shear strength of sands with inherent fabric anisotropy[J]. Acta Geotechnica, 2014, 9(2): 257-275.
    [7] 于艺林, 童朝霞, 张建民. 应力主轴旋转条件下各向异性云母砂变形的试验研究[J]. 世界地震工程, 2010, 26(增刊1): 85-89.
    (YU Yi-lin, TONG Zhao-xia, ZHANG Jian-min.Experiments study on anisotropy sands subjected to rotation of principal stress axes[J]. World Earthquake Engineering, 2010, 26(S1): 85-89. (in Chinese))
    [8] MIRGHASEMI A A N M. The effect of initial elongation of elliptical particles on macro-micromechanical behavior during direct shear test[J]. Procedia Engineering, 2015(102): 1476-1483.
    [9] FU P C, DAFALIAS Y F.Study of anisotropic shear strength of granular materials using DEM simulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(10): 1098-1126.
    [10] GAO Z W, ZHAO J D, YAO Y P.A generalized anisotropic failure criterion for geomaterials[J]. International Journal of Solids and Structures, 2010, 47(22/23): 3166-3185.
    [11] PIETRUSZCZAK S, MROZ Z.Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112.
    [12] KONG Y X, ZHAO J D, YAO Y P.A failure criterion for cross-anisotropic soils considering microstructure[J]. Acta Geotechnica, 2013, 8(6): 665-673.
    [13] LÜ X L, HUANG M S, ANDRADE J E.Strength criterion for cross-anisotropic sand under general stress conditions[J]. Acta Geotechnica, 2016, 11(6): 1339-1350.
    [14] YAO Y P, TIAN Y, GAO Z W.Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54-78.
    [15] 曹威, 王睿, 张建民. 横观各向同性砂土的强度准则[J]. 岩土工程学报, 2016, 38(11): 2026-2032.
    (CAO Wei, WANG Rui, ZHANG Jian-min.New strength criterion for sand with cross-anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2026-2032. (in Chinese))
    [16] 张连卫, 张建民, 张嘎. 基于SMP的粒状材料各向异性强度准则[J]. 岩土工程学报, 2008, 30(8): 1107-1111.
    (ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga.SMP-based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. (in Chinese))
    [17] 姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 39(1): 43-50.
    (YAO Yang-ping, KONG Yu-xia.Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 39(1): 43-50. (in Chinese))
    [18] 路德春, 梁靖宇, 王国盛, 等. 横观各向同性土的三维强度准则[J]. 岩土工程学报, 2018, 40(1): 54-63.
    (LU De-chun, LIANG Jing-yu, WANG Guo-sheng, et al.Three-dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54-63. (in Chinese))
    [19] LU D C, LIANG J Y, DU X L, et al.A novel transversely isotropic strength criterion for soils based on a mobilised plane approach[J]. Géotechnique, 2019, 69(3): 234-250.
    [20] LU D C, MA C, DU X L, et al.Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept[J]. International Journal of Geomechanics, 2017, 17(2): 4016058.
    [21] LU D C, LIANG J Y, DU X L, et al.Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105: 277-290.
    [22] ODA M, KOISHIKAWA I, HIGUCHI T.Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [23] MATSUOKA H, JUNICHI H, KIYOSHI H.Deformation and failure of anisotropic sand deposits[J]. Soil Mechanics and Foundation Engineering, 1984, 32(11): 31-36.
    [24] PARK CS T F. 1994 Anisotropic strength and deformation of sands in plane strain compression[C]// Proc XIII ISCMFE(Vol I). New Delhi, India, 1994: 1-4.
    [25] LIU M D, INDRARATNA B N.General strength criterion for geomaterials including anisotropic effect[J]. International Journal of Geomechanics, 2011, 11(3): 251-262
  • 期刊类型引用(2)

    1. 杜闯,高启辉,宋帅. 地震波斜入射下港珠澳大桥沉管隧道地震响应分析. 河北工业大学学报. 2024(03): 76-86 . 百度学术
    2. 邓捷程,吕龙,孙海忠,吕玺琳. 基于等效线性土体模型的地基与结构整体地震响应模拟. 结构工程师. 2023(03): 85-91 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-01-28
  • 发布日期:  2019-11-24

目录

    /

    返回文章
    返回