• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

南海钙质砂的动剪切模量与阻尼比试验研究

刘鑫, 李飒, 刘小龙, 陈文炜

刘鑫, 李飒, 刘小龙, 陈文炜. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
引用本文: 刘鑫, 李飒, 刘小龙, 陈文炜. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
Citation: LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024

南海钙质砂的动剪切模量与阻尼比试验研究  English Version

基金项目: 国家自然科学基金重点项目(51239008); 国家自然科学基金重大项目(51890911); 工信部高技术船舶科研计划项目(2016-[22])
详细信息
    作者简介:

    刘 鑫(1995— ),男,博士研究生,主要从事海洋土性质和土动力学方面的研究。E-mail: liuxintju@163.com。

    通讯作者:

    李飒,E-mail:lisa@tju.edu.cn

Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea

  • 摘要: 岩土体的动剪切模量和阻尼比是土工建筑物、近海场地动力稳定性分析中的主要动力学参数,为评价南海钙质砂的动力学特性,利用美国GCTS共振柱测试系统,对取自南海地区的钙质砂进行共振柱试验,研究固结压力、相对密实度对其动剪切模量和阻尼比的影响,并与石英砂进行对比分析。研究发现:相同的试验条件下,钙质砂的最大动剪切模量、阻尼比均大于石英砂;从总体而言,钙质砂的动剪切模量在剪应变小于0.1%时大于石英砂动剪切模量,在大于0.1%时两者趋于一致,其动剪切模量比G/Gmax随剪应变γ衰减的速度快于石英砂。根据试验结果建立钙质砂动剪切模量比G/Gmax、阻尼比D的数学模型,并结合现有的钙质砂动剪切模量比及阻尼比研究成果,给出钙质砂动剪切模量比和阻尼比的变化范围,为钙质砂场地工程建设中建筑物动力稳定性分析提供依据。
    Abstract: The dynamic shear modulus and damping ratio are two important parameters for the dynamic stability analysis of geotechnical structures and offshore sites. In order to evaluate the dynamic characteristics of calcareous sand in the offshore sites, the resonant column tests are performed on the calcareous sand by GCTS resonant column apparatus. Meanwhile, the effects of effective confining pressure and relative density on the dynamic shear modulus and damping ratio are investigated and compared with those of the quartz sand. It is found that the calcareous sand shows higher maximum dynamic shear modulus, higher damping ratio, and faster stiffness degradation than the quartz sand under similar states of effective confining pressure and relative density. Generally speaking, the calcareous sand shows higher Gmax than the quartz sand when the shear strain is less than 0.1%. Finally, a mathematical model for the normalized dynamic shear modulus and damping ratio of the calcareous sand is established according to the test results in this study. Based on the existing researches on the calcareous sand, the variation ranges of the normalized dynamic shear modulus and damping ratio of the calcareous sand are given, and they may provide the basis for the dynamic stability analysis of buildings in the construction of calcareous sand sites.
  • [1] 沈建华, 汪稔. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 2010, 18(增刊1): 26-32.
    (SHEN Jian-hua, WANG Ren.Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 2010, 18(S1): 26-32. (in Chinese))
    [2] 金宗川, 陈伟俊, 王新志, 等. 南海钙质砂的休止角与工程应用[J]. 岩土力学, 2018, 39(7): 1-9.
    (JIN Zong-chuan, CHEN Wei-jun, WANG Xin-zhi, et al.Study on engineering application of natural repose angle of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(7): 1-9. (in Chinese))
    [3] 张炜, 李亚, 周松望, 等. 南海北部区域黏土循环动力特性试验研究[J]. 岩土力学, 2018, 39(7): 1-11.
    (ZHANG Wei, LI Ya, ZHOU Song-wang, et al.Experimental research on cyclic behaviors of clay in the northern region of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(7): 1-11. (in Chinese))
    [4] 虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11.
    (YU Hai-zhen, WANG Ren.The cyclic strength test research on calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese))
    [5] 李建国. 波浪荷载下饱和钙质砂动力特性的试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005.
    (LI Jian-guo.Experimental research on dynamic behavior of saturated calcareous sand under wave loading[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2005. (in Chinese))
    [6] 刘汉龙, 胡鼎, 肖杨, 等. 钙质砂动力液化特性的试验研究[J]. 防灾减灾工程学报, 2015, 35(6): 707-711.
    (LIU Han-long, HU Ding, XIAO Yang, et al.Test study on dynamic liquefaction characteristics of calcareous sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(6): 707-711. (in Chinese))
    [7] HYODO M, ARAMAKI N, ITOH M, et al.Cyclic strength and deformation of crushable carbonate sand[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(5): 331-336.
    [8] MAO X, FAHEY M.Behaviour of calcareous soils in undrained cyclic simple shear[J]. Géotechnique, 2003, 53(8): 715-727.
    [9] SANDOVAL E A, PANDO M A, OLGUN C G.Liquefaction susceptibility of a calcareous sand from southwest Puerto Rico[C]// Proceedings of the 5th International Conference on Earthquake Geotechnical Engineering. Santiago, 2011.
    [10] SANDOVAL E A, PANDO M A.Experimental assessment of the liquefaction resistance of calcareous biogenous sands[J]. Earth Sciences Research Journal, 2012, 16(1): 55-63.
    [11] PORCINO D, CARIDI G, GHIONNA V N.Undrained monotonic and cyclic simple shear behavior of carbonate sand[J]. Géotechnique, 2008, 58(8): 635-644.
    [12] PORCINO D, MARCIANO V.Evaluating liquefaction resistance of a calcareous sand using the cone penetration test[C]// Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, California, 2010: 1-9.
    [13] CARRARO J A H, BORTOLOTTO M S. Stiffness degradation and damping of carbonate and silica sands[C]// Frontiers in Offshore Geotechnics Ⅲ-Meyer, Taylor & Francis Group. London, 2015: 1179-1183.
    [14] WANG Yan-ning.Dynamic properties of fine liquefiable sand and calcareous sand from resonant column testing[D]. Austin: The University of Texas at Austin, 2015.
    [15] GIANG P H H, PETER O V I, WILLIAM F V I, et al. Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 371-379.
    [16] ISHIHARA K.Soil behaviour in earthquake geotechnics[M]. New York: Oxford University Press, 1996.
    [17] SL 237—1999土工试验规程[S]. 1999. (SL 237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [18] 贺为民, 李德庆, 杨杰, 等. 土的动剪切模量、阻尼比和泊松比研究进展[J]. 地震工程学报, 2016, 38(2): 309-317.
    (HE Wei-min, LI De-qing, YANG Jie, et al.Recent progress in research on dynamic shear modulus, damping ratio, and poisson ration of soils[J]. China Earthquake Engineering Journal, 2016, 38(2): 309-317. (in Chinese))
    [19] SEED H B, IDRISS I M.Soil moduli and damping factors for dynamic analysis [R]. Berkeley: University of California, 1970.
    [20] SEED H B, WONG R T, IDRISS I M, et al.Moduli and damping factors for dynamic analyses of cohesionless soils[J]. Journal of Geotechnical Engineering, 1986, 112(11): 1016-1032.
    [21] ROLLINS K M, EVANS M D, DIEHL N B, et al.Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 398-405.
    [22] IWASAKI T, TATSUOKA F, TAKAGI Y.Shear moduli of sands under cyclic torsional shear loading[J]. Soils and Foundations, 1978, 18(1): 39-56.
    [23] KOKUSHO T.Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60.
    [24] NI S H. Dynamic properties of sand under true triaxial stress states from resonant column/torsional shear tests[D].4 ]NI S H. Dynamic properties of sand under true triaxial stress states from resonant column/torsional shear tests[D]. Austin: The University of Texas at Austin, 1987.
    [25] ISHIBASHI I, ZHANG X.Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soils and Foundations, 1993, 33(1): 182-191.
    [26] EPRI. Guidelines for determining design basis ground motions-volume 2: appendices for ground motion estimation[R]. Palo Alto: Electric Power Research Institute, 1993.
    [27] DARENDELI M B, STOKOE K H, RATHJE E M, et al.Importance of confining pressure on nonlinear soil behavior and its impact on earthquake response predictions of deep sites[C]// Proceedings of the XVth International Conference on Soil Mechanics and Geotechnical Engineering. Istanbul, 2001: 2811-2814.
    [28] 祝龙根, 徐存森. 共振柱仪及其在工程中的应用[J]. 大坝观测与土工测试, 1993, 17(2): 32-37.
    (ZHU Long-gen, XU Cun-sen.The resonant column device and its application in engineering[J]. Dam Observation and Geotechnical Tests, 1993, 17(2): 32-37. (in Chinese))
    [29] 袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139.
    (YUAN Xiao-ming, SUN Rui, SUN Jing, et al.Laboratory experimental study on dynamic shear modulus ratio and damping ration of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139. (in Chinese))
    [30] DARENDELI B M.Development of a new family of normalized modulus reduction and material damping curves[D]. Austin: The University of Texas at Austin, 2001.
    [31] JAFARIAN Y, JAVDANIAN H, HADDAD A.Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions[J]. Soils and Foundations, 2018, 58(1): 172-184.
  • 期刊类型引用(6)

    1. 张雄辉,黄孝福,黄诗渊,刘发贵,聂亮冰,黎子玄. 压剪条件下裂缝开闭对准脆性材料断裂行为的影响机制研究. 中国农村水利水电. 2025(03): 128-135 . 百度学术
    2. 梁鹏,李壮,刘俊岭,王聚贤,王骏涛. 三点弯曲试验下花岗岩应变场及损伤演化研究. 地下空间与工程学报. 2023(02): 486-494 . 百度学术
    3. 杨旭旭,吴岳,靖洪文. 基于超声波实测的巷道围岩裂缝扩展和强度演变规律研究. 采矿与安全工程学报. 2021(03): 528-537 . 百度学术
    4. 张超,杨楚卿,白允. 岩石类脆性材料损伤演化分析及其模型方法研究. 岩土力学. 2021(09): 2344-2354 . 百度学术
    5. 何泓易. Hoek-Brown强度准则在隧道围岩卸荷试验中的应用研究. 韶关学院学报. 2021(12): 19-23 . 百度学术
    6. 王思,胡晶,张雪东,任晓丹,陈祖煜,张紫涛. 不同水深水下爆炸数值及离心试验研究. 哈尔滨工业大学学报. 2020(06): 78-84 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  391
  • HTML全文浏览量:  4
  • PDF下载量:  243
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-09-09
  • 发布日期:  2019-09-24

目录

    /

    返回文章
    返回