• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基坑开挖引起隧道水平变形的被动与注浆主动控制研究

郑刚, 潘军, 程雪松, 白如冰, 杜一鸣, 刁钰

郑刚, 潘军, 程雪松, 白如冰, 杜一鸣, 刁钰. 基坑开挖引起隧道水平变形的被动与注浆主动控制研究[J]. 岩土工程学报, 2019, 41(7): 1181-1190. DOI: 10.11779/CJGE201907001
引用本文: 郑刚, 潘军, 程雪松, 白如冰, 杜一鸣, 刁钰. 基坑开挖引起隧道水平变形的被动与注浆主动控制研究[J]. 岩土工程学报, 2019, 41(7): 1181-1190. DOI: 10.11779/CJGE201907001
ZHENG Gang, PAN Jun, CHENG Xue-song, BAI Ru-bing, DU Yi-ming, DIAO Yu. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181-1190. DOI: 10.11779/CJGE201907001
Citation: ZHENG Gang, PAN Jun, CHENG Xue-song, BAI Ru-bing, DU Yi-ming, DIAO Yu. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181-1190. DOI: 10.11779/CJGE201907001

基坑开挖引起隧道水平变形的被动与注浆主动控制研究  English Version

基金项目: 国家重点研发计划项目(2016YFC0802008); 天津市科技计划项目(16YDLJSF00040); 天津市自然科学基金项目(18JCQNJC07900)
详细信息
    作者简介:

    郑 刚(1967— ),男,博士,教授,博士生导师,从事土力学及岩土工程的教学与科研工作。E-mail: zhenggang1967@163.com。

    通讯作者:

    程雪松,E-mail:cheng_xuesong@163.com

  • 中图分类号: TU433

Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation

  • 摘要: 对于邻近基坑的地铁结构保护问题,现有研究多集中于加强基坑自身支护体系、优化开挖方案等被动控制措施,此类方法缺乏在基坑开挖过程中对控制隧道变形的适时性和主动性,且会造成基坑造价提高、工期延长。以某邻近地铁结构的大面积基坑工程为例,分析了基坑施工中地铁结构的变形规律,进行了注浆对土体及隧道水平变形主动控制的试验及应用实践。在此基础上,通过数值模拟对几种隧道变形控制方法进行了对比和评价,并进行了注浆方案的优化研究。工程案例以及数值模拟结果均表明基坑分区分期开挖、分仓开挖、加强支护体系等被动控制措施具有较大局限性,而适时注浆主动控制隧道变形技术较为经济有效。在注浆策略上,多排孔注浆时“近距离、多孔位、小方量、由远及近”的注浆方案优于“远距离、少孔位、大方量、由近及远”的方案。主动注浆控制技术具有成本低、工期短、适时控制隧道变形等优点,条件适当时明显优于分区分期开挖等被动措施。
    Abstract: For safeguarding metro structures adjacent to excavation, much attention has been paid to passive control measures, such as strengthening support system of excavation and optimization of excavation scheme. The passive control measures are not timely and active to alleviate tunnel responses during the construction process of excavation, and increase the cost and construction period of excavation. Based on a large excavation adjacent to a metro line, the development of horizontal deformation of metro structures during the construction process is analyzed, and field tests and application of grouting to active control of the horizontal deformation of soils and of tunnels are conducted. Furthermore, several control measures are compared and evaluated through numerical simulation, and the optimization of grouting scheme is also studied. The engineering case and numerical results reveal the great limitation of passive control measures, such as staged construction, zoned construction and strengthening support system, and effectiveness and economical efficiency of timely grouting to actively control tunnel deformation. In terms of grouting scheme, the grouting scheme of “close, more grouting holes, small grout volume, from far to near” is superior to the scheme of “far, less grouting holes, large grout volume, from near to far” in the case of multiple rows of grouting holes. As the active grouting technology has the advantages of low cost, short construction period and timely controlling tunnel deformation, it is obviously superior to passive control measures such as zoned and staged construction when the condition is appropriate.
  • [1] BURFORD D.Heave of tunnels beneath the Shell Centre, London, 1959-1986[J]. Géotechnique, 1988, 38(1): 135-137.
    [2] CHANG C T, SUN C W, DUANN S W, et al.Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 151-158.
    [3] 郑刚, 朱合华, 刘新荣, 等. 基坑工程与地下工程安全及环境影响控制[J]. 土木工程学报, 2016, 49(6): 1-24.
    (ZHENG Gang, ZHU He-hua, LIU Xin-rong, et al.Control of safety of deep excavations and underground engineering and its impact on surrounding environment[J]. China Civil Engineering Journal, 2016, 49(6): 1-24. (in Chinese))
    [4] NG C W W, SHI J, MAŠÍN D, et al. Influence of sand density and retaining wall stiffness on three-dimensional responses of tunnel to basement excavation[J]. Canadian Geotechnical Journal, 2015, 52(11): 1811-1829.
    [5] SHI J W, ZHANG X, CHEN Y H, et al.Numerical parametric study of countermeasures to alleviate basement excavation effects on an existing tunnel[J]. Tunnelling and Underground Space Technology, 2018, 72: 145-153.
    [6] CHEN J J, ZHU Y F, LI M G, et al. Novel excavation and construction method of an underground highway tunnel above operating metro tunnels[J]. Journal of Aerospace Engineering, 2015, 28(6): A4014003-1-7.
    [7] LI M G, CHEN J J, WANG J H, et al.Comparative study of construction methods for deep excavations above shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 71: 329-339.
    [8] HU Z F, YUE Z Q, ZHOU J, et al.Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels[J]. Canadian Geotechnical Journal, 2003, 40(5): 933-948.
    [9] TAN Y, LI X, KANG Z J, et al. Zoned excavation of an oversized pit close to an existing metro line in stiff clay: case study[J]. Journal of Performance of Constructed Facilities, 2015, 29(6): 04014158-1-19.
    [10] LI M G, ZHANG Z J, CHEN J J, et al.Zoned and staged construction of an underground complex in Shanghai soft clay[J]. Tunnelling and Underground Space Technology, 2017, 67: 187-200.
    [11] HUANG X, SCHWEIGER H F, HUANG H W.Influence of deep excavations on nearby existing tunnels[J]. International Journal of Geomechanics, 2013, 13(2): 170-180.
    [12] CHEN R P, MENG F Y, LI Z C, et al.Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224-235.
    [13] ZHENG G, WANG F J, DU Y M, et al.The efficiency of the ability of isolation piles to control the deformation of tunnels adjacent to excavations[J]. International Journal of Civil Engineering, 2018, 16(10B): 1475-1490.
    [14] HARRIS D I, MAIR R J, LOVE J P, et al.Observations of ground and structure movements for compensation grouting during tunnel construction at Waterloo station[J]. Géotechnique, 1994, 44(4): 691-713.
    [15] SOGA K, BOLTON M D, AU S K A, et al. Development of compensation grouting modelling and control system[C]// Geotechnical Aspects of Underground Construction in Soft Ground. Rotterdam, 2000: 425-430.
    [16] KOMIYA K, SOGA K, AKAGI H, et al.Soil consolidation associated with grouting during shield tunnelling in soft clayey ground[J]. Géotechnique, 2001, 51(10): 835-846.
    [17] AU S K A, SOGA K, JAFARI M R, et al. Factors affecting long-term efficiency of compensation grouting in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 254-262.
    [18] SCHWEIGER H F, KUMMERER C, OTTERBEIN R, et al.Numerical modelling of settlement compensation by means of fracture grouting[J]. Soils and Foundations, 2004, 44(1): 71-86.
    [19] SOGA K, AU S K A, JAFARI M R, et al. Laboratory investigation of multiple grout injections into clay[J]. Géotechnique, 2004, 54(2): 81-90.
    [20] NI J C, CHENG W C.Monitoring and modeling grout efficiency of lifting structure in soft clay[J]. International Journal of Geomechanics, 2010, 10(6): 223-229.
    [21] 张冬梅, 邹伟彪, 闫静雅. 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报, 2014, 36(12): 2203-2212.
    (ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya.Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. (in Chinese)).
    [22] CHENG W C, SONG Z P, TIAN W, et al.Shield tunnel uplift and deformation characterisation: a case study from Zhengzhou metro[J]. Tunnelling and Underground Space Technology, 2018, 79: 83-95.
    [23] SCHANZ T, VERMEER P A, BONNIER P G.The hardening soil model: formulation and verification[M]// BRINKGREVE R B J. Beyond 2000 in Computational Geotechnics: 10 years of PLAXIS International. Rotterdam: A A Balkema Publishers, 1999: 281-296.
    [24] BRINKGREVE R B J, KUMARSWAMY S, SWOLFS W M, et al. PLAXIS 3D manual[M]. Delft: PLAXIS, 2017.
    [25] YE F, GOU C F, SUN H D, et al.Model test study on effective ratio of segment transverse bending rigidity of shield tunnel[J]. Tunnelling and Underground Space Technology, 2014, 41: 193-205.
    [26] LIAO S M, PENG F L, SHEN S L.Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 421-430.
    [27] NICOLINI E, NOVA R.Modelling of a tunnel excavation in a non-cohesive soil improved with cement mix injections[J]. Computers and Geotechnics, 2000, 27(4): 249-272.
    [28] MASINI L, RAMPELLO S, SOGA K.An approach to evaluate the efficiency of compensation grouting[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014073.
    [29] FALK E.Soil improvement by injection of solid material with hydraulic energy[D]. Vienna: Vienna University of Technology, 1998.
计量
  • 文章访问数:  437
  • HTML全文浏览量:  21
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-31
  • 发布日期:  2019-07-24

目录

    /

    返回文章
    返回