• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

循环三轴应力路径下钙质砂颗粒破碎演化规律

王刚, 查京京, 魏星

王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020
引用本文: 王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020
WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020
Citation: WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020

循环三轴应力路径下钙质砂颗粒破碎演化规律  English Version

基金项目: 国家自然科学基金项目(51679016)
详细信息
    作者简介:

    王刚(1978- ),男,博士,教授,主要从事土的本构理论、土动力学及地震工程、数值分析等方面的研究工作。E-mail: cewanggang@163.com。

  • 中图分类号: TU441

Evolution of particle crushing of carbonate sands under cyclic triaxial stress path

  • 摘要: 钙质砂广泛分布于中国南海区域,是吹填造陆的重要材料。钙质砂颗粒容易破碎,使得其力学特性相比于普通的陆源硅质砂有显著差异。对取自中国南海西沙群岛某岛礁的钙质砂开展了三轴排水循环剪切试验,研究了围压、循环应力比、循环振次对钙质砂颗粒破碎发展过程的影响。在试验所采用的围压范围内,钙质砂在固结过程中产生的颗粒破碎较少,但是在随后的循环剪切过程中产生了显著的颗粒破碎。在循环剪切作用下,钙质砂的颗粒破碎形式主要是尖角的磨损,剪切后试样的颗粒中出现了一些碎屑和微细颗粒,大颗粒的棱角有一定程度的磨圆,但粒径无明显减小。在常围压下的等幅循环剪切中,颗粒破碎程度随着循环剪切次数的增大而增加,增长速率逐渐降低,可以采用对数曲线来描述相对破碎指数的发展过程。再考虑围压和循环应力比的影响规律,初步建立了一个描述颗粒破碎演化过程的数学模型。
    Abstract: The carbonate sand is widely distributed in the South China Sea and used as the fill materials for land reclamation. Carbonate sand particles are fragile and can be easily crushed, making the carbonate sand exhibit distinctive mechanical behaviors compared with terrestrial silica sand. Triaxial cyclic shear tests under drained conditions are conducted on a carbonate sand taken from a reef in the South China Sea to investigate the evolution of particle crushing during cyclic shearing process. In the range of the adopted confining pressure, little particle crushing is observed in isotropic consolidation process. In contrast, remarkable particle crushing occurs during the following cyclic shearing process. Angular abrasion is the main form of particle crushing, leading to the increase of the fine particle content in the post-shearing grading. Along with the continuation of cyclic shearing, the amount of particle crushing increases continuously, but the increasing rate decreases gradually. For the cyclic shearing of constant amplitude under constant confining pressure, a logarithmic equation can be used to fit the curve of the relative breakage index versus the number of cycles. Based on with the observed influencing laws of confining pressure and cyclic stress ratio on particle crushing, a mathematical model is proposed to describe the evolution process of particle crushing during cyclic shearing process.
  • [1] KJAERNSLI B, SANDE A.Compressibility of some coarse grained materials[C]// Proceedings of the 1st European Conference on Soil Mechanics and Foundation Engineering. Weisbaden, 1963, 1: 245-251.
    [2] HALL E B, GORDON B B.Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 1963, 361: 315-328.
    [3] 常俊, 陈新民, 吕扬. 高应力条件下南京砂破碎特性的试验[J]. 南京工业大学学报(自然科学版), 2008, 30(4): 88-92.
    (CHANG Jun, CHEN Xin-min, LÜ Yang.Experiment on particle crush mechanism of Nanjing sand under high stress[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2008, 30(4): 88-92. (in Chinese))
    [4] 张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048.
    (ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren.Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese))
    [5] QADIMI A, COOP M R.The undrained cyclic behaviour of a carbonate sand[J]. Géotechnique, 2007, 57(9): 739-750.
    [6] DONOHUE S, O‘SULLIVAN C, LONG M. Particle breakage during cyclic triaxial loading of a carbonate sand[J]. Géotechnique, 2009, 59(5): 477-482.
    [7] GOLIGHTLY C R, HYDE A F L. Some fundamental properties of carbonates sands[C]// Proceedings of the International Conference on Calcareous Sediments. Perth, 1988, 1: 69-78.
    [8] HULL T S, POULUS H G, ALEHOSSEIN H.The static behavior of various calcareous sediments[C]// Proceedings of the International Conference on Calcareous Sediments. Perth, 1988.
    [9] FLYNN W L.A comparative study of cyclic loading responses and effects of cementation on liquefaction potential of calcareous and silica sands[D]. Manoa: University of Hawaii, 1997.
    [10] HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543.
    [11] MORIOKA B T, NICHOLSON P G.Evaluation of the liquefaction potential of calcareous sand[C]// Proceedings of the 10th International Offshore and Polar Engineering Conference. Seattle, 2000.
    [12] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17.
    (ZHANG Jian-min.Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17. (in Chinese))
    [13] GUYON E, TROADEC J P.Du sac de billes au tas de sable[M]. France: Odile Jacob Science, 1994.
    (GUYON É, TROADEC J P.Du sac de billes au tas de sable[M]. Odile Jacob Sciences, France, 1994. (in France))
    [14] VESIC A S, CLOUGH G W.Behavior of granular materials under high stresses[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1968, 94(SM3): 661-688.
    [15] NAKATA Y, HYODO M, HYDE A F L, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 2001, 41(1): 69-82.
    [16] BASTIDAS P A M. Ottawa F-65 sand characterization[D]. California: University of California at Davis, 2016.
    [17] 吴京平, 褚瑶, 楼志刚. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 1997, 19(5): 51-57.
    (WU Jing-ping, CHU Yao, LOU Zhi-gang.Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 51-57. (in Chinese))
    [18] COOP M R, SORENSEN K K, BODAS T, et al.Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.
    [19] 张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793.
    (ZHANG Jia-ming, ZHANG Lin, JIANG Guo-sheng, et al.Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese))
    [20] 王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810.
    (WANG Gang, YE Qin-guo, ZHA Jing-jing.Experimental study on mechanical behavior and particle crushing of coral sand-gravel fills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese))
    [21] HARDIN B O.Crushing of soil particles[J]. Journal of Geotechnical Engineering ASCE, 1985, 111(10): 1177-1192.
  • 期刊类型引用(8)

    1. 王炜,窦锦钟,袁青云,韩磊,孙旻. 抽水蓄能电站绿色施工技术. 施工技术(中英文). 2024(18): 129-133+153 . 百度学术
    2. 张昕阳,申玉生,常铭宇,王浩鱇,潘笑海,王岩岩. 基于GA-BP神经网络的隧道围岩相似材料配合比设计. 现代隧道技术. 2024(06): 82-91 . 百度学术
    3. 廖光明. 胶凝砂砾石坝抗滑稳定可靠度分析方法研究. 湖南水利水电. 2023(02): 22-25 . 百度学术
    4. 丁泽霖,王肖楠,张宏洋,王婧,包闯. 复杂地基重力坝与胶凝砂砾石坝变形破坏对比分析. 工程科学与技术. 2023(04): 197-206 . 百度学术
    5. 杨锐婷,万露. 折线形胶凝砂砾石坝三维静力有限元分析. 吉林水利. 2023(07): 14-20 . 百度学术
    6. 丁泽霖,徐良杰,王肖楠. 基于多元优化的百米级胶凝砂砾石坝设计方法. 水力发电学报. 2023(12): 119-131 . 百度学术
    7. 杨玉坚,刘艳华,陈雪冬. 胶凝砂砾石坝导流设计方法研究. 水利建设与管理. 2023(S1): 35-39 . 百度学术
    8. 刘欢. 基于AutoBANK的流固耦合场沙田水库坝体渗流变形特征研究. 水利科学与寒区工程. 2022(08): 26-30 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  403
  • HTML全文浏览量:  23
  • PDF下载量:  203
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-03-26
  • 发布日期:  2019-04-24

目录

    /

    返回文章
    返回