• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

适于不同深度土层液化的剪切波速判别公式

孙锐, 袁晓铭

孙锐, 袁晓铭. 适于不同深度土层液化的剪切波速判别公式[J]. 岩土工程学报, 2019, 41(3): 439-447. DOI: 10.11779/CJGE201903005
引用本文: 孙锐, 袁晓铭. 适于不同深度土层液化的剪切波速判别公式[J]. 岩土工程学报, 2019, 41(3): 439-447. DOI: 10.11779/CJGE201903005
SUN Rui, YUAN Xiao-ming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 439-447. DOI: 10.11779/CJGE201903005
Citation: SUN Rui, YUAN Xiao-ming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 439-447. DOI: 10.11779/CJGE201903005

适于不同深度土层液化的剪切波速判别公式  English Version

基金项目: 中国地震局工程力学研究所基本科研业务费专项项目(2017B09)
详细信息
    作者简介:

    孙 锐(1972- ),女,研究员,博士,主要从事岩土地震工程研究。E-mail: iemsr@163.com。

    通讯作者:

    袁晓铭,E-mail:yxmiem@163.com

Depth-consistent vs-based approach for soil liquefaction evaluation

  • 摘要: 剪切波速测试是工程上常用的现场技术,正逐步成为液化判别方法的基本指标之一。利用早期的Andrus数据库对中国《岩土工程勘察规范》方法和Andrus方法进行检验,发现了二者存在的问题。提出了双曲线形式的剪切波速判别模型和公式。采用新的Kayen数据库对三者进行了对比检验,并讨论了提高判别精度的可能性和方式。结果表明:中国现行的《岩土工程勘察规范》中剪切波速判别液化方法,无论对浅层还是深层土,判别结果均严重保守,甚至会把十分密实的砂土判成液化,十分不合理;国际上应用广泛的Andrus方法对浅层土判别结果过于保守,对深层土判别成功率可以接受,但其临界剪切波速曲线在深处存在回弯的不合理现象;所提出的双曲线液化判别模型和公式,能够深浅兼顾,无论对浅层还是深层土都能给出较好的判别结果,克服了中国规范方法和Andrus方法的弊端,且形式简单便于工程应用;采用剪切波速进行液化判别时,应采取多次测试,以降低数据离散性,提高判别的准确性。
    Abstract: The shear wave velocity tests have been commonly used as an engineering field testing technique, and are gradually becoming a basic index for soil liquefaction evaluation. The shortcoming of the Andrus' method and Chinese code method has been found by using the database from Andrus, and the new hyperbolic model and formula Vs-based for estimating liquefaction potential of liquefiable layer are proposed. The reliability of the above three methods is verified through the data newly collected by Kayen, and the possibility and approach of improving the discrimination accuracy are discussed. The results indicate that the Chinese code method is significantly conservative for both shallow soil layer and deep soil layer and will predict the dense sand as liquefiable. The Andrus' method is conservative for shallow soil layer, and an irrational phenomenon of back bending occurs in the deep soil layer. The proposed hyperbolic model can provide good results for both shallow soil layer and deep soil layer and solve the deficiency of Chinese code method and Andrus' method. When the in-situ shear-wave velocity tests are used to predict soil liquefaction for a specific site, multiple tests should be taken to reduce data discreteness.
  • [1] 袁晓铭, 曹振中, 孙锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报,2009, 28(6): 1288-1296.
    (YUAN Xiao-ming, CAO Zhen-zhong, SUN Rui, et al.Preliminary research on liquefaction characteristics of Wenchuan 8.0 Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1288-1296. (in Chinese))
    [2] 李兆焱, 袁晓铭. 2016年台湾高雄地震场地效应及砂土液化破坏概述[J]. 世界地震工程, 2016, 36(3): 1-7.
    (LI Zhao-yan, YUAN Xiao-ming.Seismic damage summarize of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J]. World Earthquake Engineering, 2016, 36(3): 1-7. (in Chinese))
    [3] 黄雨, 于淼. BHATTACHARYA Subhamoy.2011 年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报,2013, 35(5): 834-840.
    (HUANG Yu, YU Miao, BHATTACHARYA Subhamoy.Review on liquefaction- induced damages of soils and foundations during 2011 of the Pacific Coast of Tohoku Earthquake (Japan)[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 834-840. (in Chinese))
    [4] GB 50011—2010建筑抗震设计规范[S]. 2010.
    (GB 50011—2010 Code for seismic design of buildings[S]. 2010. (in Chinese))
    [5] GB 50021—2001岩土工程勘察规范[S]. 2009.
    (GB 50021—2001 Code for investigation of geotechnical engineering[S]. 2009. (in Chinese))
    [6] GB50487—2008水利水电工程土质勘察规范[S]. 2008.
    (GB50487—2008 Code for engineering geological investigation of water resources and hydropower[S]. 2008. (in Chinese))
    [7] 曹振中, 刘荟达, 袁晓铭. 基于动力触探的砾性土液化判别方法通用性研究[J]. 岩土工程学报, 2016, 38(1): 163-169.
    (CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming.Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. (in Chinese))
    [8] 汪闻韶. 剪切波速在评估地基饱和砂层地震液化可能性中的应用[J]. 岩土工程学报, 2001, 23(6): 655-658.
    (WANG Wen-shao.Utilization of shear wave velocity in assessment of liquefaction potential of saturated sand under level groung during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 655-658. (in Chinese))
    [9] 柯翰, 陈云敏. 改进的判别砂土液化势的剪切波速法[J]. 地震学报, 2000, 22(6): 637-644.
    (KE Han, CHEN Yun-ming.An improved method for evaluating liquefaction potential by the velocity of shear-waves[J]. ACTA Seismologica Sinica, 2000, 22(6): 637-644. (in Chinese))
    [10] 周燕国, 陈云敏, 柯翰. 砂土液化势剪切波速简化判别法的改进[J]. 岩石力学与工程学报, 2005, 24(13): 2369-2375.
    (ZHOU Yan-guo, CHEN Yun-min, KE Han.Improvement of simplified procedure for liquefaction potential evaluation of sands by shear wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2369-2375. (in Chinese))
    [11] 石兆吉, 郁寿松, 丰万玲. 土壤液化势的剪切波速判别法[J]. 岩土工程学报, 1993, 15(1):74-80.
    (SHI Zhao-ji, YU Shou-song, FENG Wan-ling.Evaluating soil liquefaction potential by the velocity of shear-waves[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1): 74-80. (in Chinese))
    [12] 王德咏, 罗先启, 吴雪萍. 剪切波速与标准贯入击数N值的关系研究[J]. 路基工程, 2010(3): 29-31.
    (WANG De-yong, LUO Xian-qi, WU Xue-ping.Study on the relationship between shear wave velocity and standard penetration compaction number N[J]. Subgrade Engineering, 2010(3): 29-31. (in Chinese))
    [13] 邱志刚, 薄景山, 罗琦峰. 土壤剪切波速与标贯击数关系的统计分析[J]. 自然灾害学报, 2012, 21(2): 102-107.
    (QIU Zhi-gang, BO Jing-shan, LUO Qi-feng.Statistical analysis of relationship between shear wave velocity and standard penetration test blow count[J]. Journal of Natural Disasters, 2012, 21(2):102-107. (in Chinese))
    [14] ANDRUS R D, STOKOE II K H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 2000, 126(11): 1015-1025.
    [15] 陈龙伟, 袁晓铭, 孙锐. 2011 年新西兰Mw 6.3地震液化及岩土震害述评[J]. 世界地震工程, 2013, 29(3): 1-9.
    (CHEN Long-wei, YUAN Xiao-ming, SUN Rui.Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese))
    [16] GB 18306—2015 中国地震动参数区划图[S]. 2016.
    (GB 18306—2015 Seismic ground motion parameters zonation map of China[S]. 2016. (in Chinese))
    [17] 汪云龙, 袁晓铭, 陈龙伟. 基于弯曲元技术的无黏性土剪切波速与相对密度联合测试方法[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3418-3423.
    (WANG Yun-long, YUAN Xiao-ming, CHEN Long-wei.A measurement method for the relationship between shear wave velocity and relative density of cohesionless soils using Bender Elements technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3418-3423. (in Chinese))
    [18] 刘红帅, 郑桐, 齐文浩, 等. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报, 2010, 32(7): 1142-1149.
    (LIU Hong-shuai, ZHENG Tong, QI Wen-hao, et al.Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1142-1149. (in Chinese))
    [19] 孔孟云, 陈国兴, 李小军, 等. 以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法[J]. 岩土力学, 2015, 36(5): 1239-1252.
    (KONG Meng-yun, CHEN Guo-xing, LI Xiao-jun, et al.Shear wave velocity and peak ground acceleration based deterministic and probabilistic assessment of seismic soil liquefaction potential[J]. Rock and Soil Mechanics, 2015, 36(5): 1239-1252. (in Chinese))
    [20] KAYEN R, MOSS R E S, THOMPSON E M. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 407-419.
    [21] SEED H B, TOKIMATSU K, HARDER L F, et al.The influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering. 1985, 111(12): 1425-1445.
    [22] 孙锐, 赵倩玉, 袁晓铭. 液化判别的双曲线模型[J]. 岩土工程学报, 2014, 36(11): 2061-2068.
    (SUN Rui, ZHAO Qian-yu, YUAN Xiao-ming.Hyperbolic model for estimating liquefaction potential of sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2061-2068. (in Chinese))
    [23] 陈卓识. 现场剪切波速测试误差及其对地震动影响研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2015.
    (CHEN Zhuo-shi.The study of situ shear wave velocity test error and its effects on ground motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2015. (in Chinese))
  • 期刊类型引用(20)

    1. 陈益江. 剪切波速测试技术在岩土勘察中的应用. 四川水泥. 2024(07): 40-42 . 百度学术
    2. 胡庆,李漪,汤勇,杨钢. 基于剪切波速的砂土液化临界公式. 工程抗震与加固改造. 2024(05): 179-189 . 百度学术
    3. 孙洪新,左鹏. 地震剪切波速度测试在岩土工程勘察中的应用. 工程机械与维修. 2023(02): 105-107 . 百度学术
    4. 岳庆霞,于一浦,杨彬,王华林. 山东临沂地区砂土剪切波速与标准贯入击数关系统计分析. 世界地震工程. 2023(02): 220-229 . 百度学术
    5. 胡庆,汤勇,朱萌,杨钢. 饱和砂土地基地震液化深度的试验研究. 科学技术与工程. 2023(35): 15188-15193 . 百度学术
    6. 周燕国,周鑫辉,桑毅佳,石安池,陈云敏. 考虑沉积时间效应的原位砂土抗液化强度剪切波速评价. 岩土工程学报. 2023(S2): 19-24 . 本站查看
    7. 吕俊超. 四种剪切波速液化判别法的区域适用性研究. 四川建材. 2022(03): 71-73 . 百度学术
    8. 杨胜文,石旷,杨吉新,凌中水. 激振力作用下桩侧土液化特性及拔桩过程分析. 合肥工业大学学报(自然科学版). 2022(04): 512-519 . 百度学术
    9. 刘红帅,宋东松,冯震. 砂土液化剪切波速判别方法的对比分析. 地震工程与工程振动. 2022(04): 105-112 . 百度学术
    10. 陈莹波,李明超,任秋兵,杨琳,赵宇. 土石坝坝基液化土层置换材料关键参数优化. 水力发电学报. 2022(10): 140-151 . 百度学术
    11. 高清材,张国超. 砂土液化综合判别法的研究与应用. 土工基础. 2021(02): 222-227 . 百度学术
    12. 郭义,杨伟明,何志刚,徐娟花. 巴基斯坦某电厂填方对砂土液化影响的探讨. 电力勘测设计. 2021(05): 77-80 . 百度学术
    13. 李义兵. 某工程场地剪切波速特征探讨. 绿色科技. 2021(10): 244-247 . 百度学术
    14. 袁敬. GN汽车工厂岩土工程场地适宜性评价. 水利与建筑工程学报. 2020(02): 82-87 . 百度学术
    15. 宋健,师黎静,党鹏飞,李昕蕾. 哈尔滨市剪切波速与埋深相关性分析. 建筑结构. 2020(S1): 1088-1092 . 百度学术
    16. 卢坤玉,李兆焱,袁晓铭,张思宇. 国内外标准贯入测试影响因素研究. 地震研究. 2020(03): 582-591+604 . 百度学术
    17. 董青,周正华,苏杰,李小军,郝冰,李远东. 基于对数动骨架考虑可逆孔压的有效应力本构研究. 岩土工程学报. 2020(12): 2322-2329 . 本站查看
    18. 袁晓铭,卢坤玉,林颖,李成军,李新生,李天宁. 哈尔滨地区砂土层N-V关系特征曲线及对比研究. 地震工程与工程振动. 2020(06): 1-15 . 百度学术
    19. 胡庆,朱萌,杨钢,雷东宁. 利用剪切波速对饱和砂土地震液化的判别. 水利水电技术. 2019(09): 134-139 . 百度学术
    20. 郝兵,任志善,李从昀. 几种地震液化判别方法的对比. 岩土工程技术. 2019(05): 278-283 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  324
  • HTML全文浏览量:  8
  • PDF下载量:  289
  • 被引次数: 35
出版历程
  • 收稿日期:  2018-01-31
  • 发布日期:  2019-03-24

目录

    /

    返回文章
    返回