Citation: | SUN Rui, YUAN Xiao-ming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 439-447. DOI: 10.11779/CJGE201903005 |
[1] |
袁晓铭, 曹振中, 孙锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报,2009, 28(6): 1288-1296.
(YUAN Xiao-ming, CAO Zhen-zhong, SUN Rui, et al.Preliminary research on liquefaction characteristics of Wenchuan 8.0 Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1288-1296. (in Chinese)) |
[2] |
李兆焱, 袁晓铭. 2016年台湾高雄地震场地效应及砂土液化破坏概述[J]. 世界地震工程, 2016, 36(3): 1-7.
(LI Zhao-yan, YUAN Xiao-ming.Seismic damage summarize of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J]. World Earthquake Engineering, 2016, 36(3): 1-7. (in Chinese)) |
[3] |
黄雨, 于淼. BHATTACHARYA Subhamoy.2011 年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报,2013, 35(5): 834-840.
(HUANG Yu, YU Miao, BHATTACHARYA Subhamoy.Review on liquefaction- induced damages of soils and foundations during 2011 of the Pacific Coast of Tohoku Earthquake (Japan)[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 834-840. (in Chinese)) |
[4] |
GB 50011—2010建筑抗震设计规范[S]. 2010.
(GB 50011—2010 Code for seismic design of buildings[S]. 2010. (in Chinese)) |
[5] |
GB 50021—2001岩土工程勘察规范[S]. 2009.
(GB 50021—2001 Code for investigation of geotechnical engineering[S]. 2009. (in Chinese)) |
[6] |
GB50487—2008水利水电工程土质勘察规范[S]. 2008.
(GB50487—2008 Code for engineering geological investigation of water resources and hydropower[S]. 2008. (in Chinese)) |
[7] |
曹振中, 刘荟达, 袁晓铭. 基于动力触探的砾性土液化判别方法通用性研究[J]. 岩土工程学报, 2016, 38(1): 163-169.
(CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming.Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. (in Chinese)) |
[8] |
汪闻韶. 剪切波速在评估地基饱和砂层地震液化可能性中的应用[J]. 岩土工程学报, 2001, 23(6): 655-658.
(WANG Wen-shao.Utilization of shear wave velocity in assessment of liquefaction potential of saturated sand under level groung during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 655-658. (in Chinese)) |
[9] |
柯翰, 陈云敏. 改进的判别砂土液化势的剪切波速法[J]. 地震学报, 2000, 22(6): 637-644.
(KE Han, CHEN Yun-ming.An improved method for evaluating liquefaction potential by the velocity of shear-waves[J]. ACTA Seismologica Sinica, 2000, 22(6): 637-644. (in Chinese)) |
[10] |
周燕国, 陈云敏, 柯翰. 砂土液化势剪切波速简化判别法的改进[J]. 岩石力学与工程学报, 2005, 24(13): 2369-2375.
(ZHOU Yan-guo, CHEN Yun-min, KE Han.Improvement of simplified procedure for liquefaction potential evaluation of sands by shear wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2369-2375. (in Chinese)) |
[11] |
石兆吉, 郁寿松, 丰万玲. 土壤液化势的剪切波速判别法[J]. 岩土工程学报, 1993, 15(1):74-80.
(SHI Zhao-ji, YU Shou-song, FENG Wan-ling.Evaluating soil liquefaction potential by the velocity of shear-waves[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1): 74-80. (in Chinese)) |
[12] |
王德咏, 罗先启, 吴雪萍. 剪切波速与标准贯入击数
(WANG De-yong, LUO Xian-qi, WU Xue-ping.Study on the relationship between shear wave velocity and standard penetration compaction number |
[13] |
邱志刚, 薄景山, 罗琦峰. 土壤剪切波速与标贯击数关系的统计分析[J]. 自然灾害学报, 2012, 21(2): 102-107.
(QIU Zhi-gang, BO Jing-shan, LUO Qi-feng.Statistical analysis of relationship between shear wave velocity and standard penetration test blow count[J]. Journal of Natural Disasters, 2012, 21(2):102-107. (in Chinese)) |
[14] |
ANDRUS R D, STOKOE II K H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 2000, 126(11): 1015-1025.
|
[15] |
陈龙伟, 袁晓铭, 孙锐. 2011 年新西兰Mw 6.3地震液化及岩土震害述评[J]. 世界地震工程, 2013, 29(3): 1-9.
(CHEN Long-wei, YUAN Xiao-ming, SUN Rui.Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese)) |
[16] |
GB 18306—2015 中国地震动参数区划图[S]. 2016.
(GB 18306—2015 Seismic ground motion parameters zonation map of China[S]. 2016. (in Chinese)) |
[17] |
汪云龙, 袁晓铭, 陈龙伟. 基于弯曲元技术的无黏性土剪切波速与相对密度联合测试方法[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3418-3423.
(WANG Yun-long, YUAN Xiao-ming, CHEN Long-wei.A measurement method for the relationship between shear wave velocity and relative density of cohesionless soils using Bender Elements technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3418-3423. (in Chinese)) |
[18] |
刘红帅, 郑桐, 齐文浩, 等. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报, 2010, 32(7): 1142-1149.
(LIU Hong-shuai, ZHENG Tong, QI Wen-hao, et al.Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1142-1149. (in Chinese)) |
[19] |
孔孟云, 陈国兴, 李小军, 等. 以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法[J]. 岩土力学, 2015, 36(5): 1239-1252.
(KONG Meng-yun, CHEN Guo-xing, LI Xiao-jun, et al.Shear wave velocity and peak ground acceleration based deterministic and probabilistic assessment of seismic soil liquefaction potential[J]. Rock and Soil Mechanics, 2015, 36(5): 1239-1252. (in Chinese)) |
[20] |
KAYEN R, MOSS R E S, THOMPSON E M. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 407-419.
|
[21] |
SEED H B, TOKIMATSU K, HARDER L F, et al.The influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering. 1985, 111(12): 1425-1445.
|
[22] |
孙锐, 赵倩玉, 袁晓铭. 液化判别的双曲线模型[J]. 岩土工程学报, 2014, 36(11): 2061-2068.
(SUN Rui, ZHAO Qian-yu, YUAN Xiao-ming.Hyperbolic model for estimating liquefaction potential of sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2061-2068. (in Chinese)) |
[23] |
陈卓识. 现场剪切波速测试误差及其对地震动影响研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2015.
(CHEN Zhuo-shi.The study of situ shear wave velocity test error and its effects on ground motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2015. (in Chinese)) |
1. |
陈益江. 剪切波速测试技术在岩土勘察中的应用. 四川水泥. 2024(07): 40-42 .
![]() | |
2. |
胡庆,李漪,汤勇,杨钢. 基于剪切波速的砂土液化临界公式. 工程抗震与加固改造. 2024(05): 179-189 .
![]() | |
3. |
孙洪新,左鹏. 地震剪切波速度测试在岩土工程勘察中的应用. 工程机械与维修. 2023(02): 105-107 .
![]() | |
4. |
岳庆霞,于一浦,杨彬,王华林. 山东临沂地区砂土剪切波速与标准贯入击数关系统计分析. 世界地震工程. 2023(02): 220-229 .
![]() | |
5. |
胡庆,汤勇,朱萌,杨钢. 饱和砂土地基地震液化深度的试验研究. 科学技术与工程. 2023(35): 15188-15193 .
![]() | |
6. |
周燕国,周鑫辉,桑毅佳,石安池,陈云敏. 考虑沉积时间效应的原位砂土抗液化强度剪切波速评价. 岩土工程学报. 2023(S2): 19-24 .
![]() | |
7. |
吕俊超. 四种剪切波速液化判别法的区域适用性研究. 四川建材. 2022(03): 71-73 .
![]() | |
8. |
杨胜文,石旷,杨吉新,凌中水. 激振力作用下桩侧土液化特性及拔桩过程分析. 合肥工业大学学报(自然科学版). 2022(04): 512-519 .
![]() | |
9. |
刘红帅,宋东松,冯震. 砂土液化剪切波速判别方法的对比分析. 地震工程与工程振动. 2022(04): 105-112 .
![]() | |
10. |
陈莹波,李明超,任秋兵,杨琳,赵宇. 土石坝坝基液化土层置换材料关键参数优化. 水力发电学报. 2022(10): 140-151 .
![]() | |
11. |
高清材,张国超. 砂土液化综合判别法的研究与应用. 土工基础. 2021(02): 222-227 .
![]() | |
12. |
郭义,杨伟明,何志刚,徐娟花. 巴基斯坦某电厂填方对砂土液化影响的探讨. 电力勘测设计. 2021(05): 77-80 .
![]() | |
13. |
李义兵. 某工程场地剪切波速特征探讨. 绿色科技. 2021(10): 244-247 .
![]() | |
14. |
袁敬. GN汽车工厂岩土工程场地适宜性评价. 水利与建筑工程学报. 2020(02): 82-87 .
![]() | |
15. |
宋健,师黎静,党鹏飞,李昕蕾. 哈尔滨市剪切波速与埋深相关性分析. 建筑结构. 2020(S1): 1088-1092 .
![]() | |
16. |
卢坤玉,李兆焱,袁晓铭,张思宇. 国内外标准贯入测试影响因素研究. 地震研究. 2020(03): 582-591+604 .
![]() | |
17. |
董青,周正华,苏杰,李小军,郝冰,李远东. 基于对数动骨架考虑可逆孔压的有效应力本构研究. 岩土工程学报. 2020(12): 2322-2329 .
![]() | |
18. |
袁晓铭,卢坤玉,林颖,李成军,李新生,李天宁. 哈尔滨地区砂土层N-V关系特征曲线及对比研究. 地震工程与工程振动. 2020(06): 1-15 .
![]() | |
19. |
胡庆,朱萌,杨钢,雷东宁. 利用剪切波速对饱和砂土地震液化的判别. 水利水电技术. 2019(09): 134-139 .
![]() | |
20. |
郝兵,任志善,李从昀. 几种地震液化判别方法的对比. 岩土工程技术. 2019(05): 278-283 .
![]() |