• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

离子固化剂改性蒙脱土吸附水特性及持水模型研究

黄伟, 刘清秉, 项伟, 张云龙, 王臻华, DAOMinhHuan

黄伟, 刘清秉, 项伟, 张云龙, 王臻华, DAOMinhHuan. 离子固化剂改性蒙脱土吸附水特性及持水模型研究[J]. 岩土工程学报, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
引用本文: 黄伟, 刘清秉, 项伟, 张云龙, 王臻华, DAOMinhHuan. 离子固化剂改性蒙脱土吸附水特性及持水模型研究[J]. 岩土工程学报, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
Citation: HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013

离子固化剂改性蒙脱土吸附水特性及持水模型研究  English Version

基金项目: 国家自然科学基金项目(41572286,41672297,41202199);湖北省自然科学基金项目(2015CFB247)
详细信息
    作者简介:

    黄 伟(1990- ),男,博士研究生,主要从事黏土物化性质及特殊土改良方面的研究工作。E-mail:22huangwei@163.com。

    通讯作者:

    刘清秉,E-mail:liuqingbing_1357@163.com

  • 中图分类号: TU443

Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer

  • 摘要: 采用不同浓度离子固化剂对天然钙蒙脱土进行改性处理,开展素土与改性土在相对湿度(P/P0)0.01~0.95区间的水汽等温吸—脱附试验,通过持水速率曲线、晶层d001演化曲线及红外光谱特征峰解析蒙脱土吸附水进程中主控因素的演化规律,据此提出水合状态变化的界限相对湿度区间,在此基础上,分别从阳离子水化能和晶层表面水合能角度,建立了离子固化剂改性蒙脱土微观持水方程。试验结果表明:对于钙蒙脱土,在0<P/P0<0.15~0.2,阳离子与水分子结合形成单层“水化壳”;在0.15~0.2<P/P0<0.45~0.5,阳离子形成2层“水化壳”;当0.45~0.5<P/P0<0.8~0.9,晶层基面进一步吸附水分子形成2层完整水化膜。在极高吸力段(ψ>200 MPa),蒙脱土持水能力只受控于层间阳离子水化作用,而在中高吸力段(15 MPa<ψ<200 MPa),晶层基面与水之间的分子作用力是影响蒙脱土表面水合能及持水性状的主要因素。在特定吸力范围内,离子固化剂通过改变相应的物化性质参数(阳离子交换量、比表面积)从而弱化蒙脱土持水能力。基于微观水合机制所构建的持水方程能够很好预测本次试验及文献报道的数据结果,不同吸力段的持水模型可量化表征离子固化剂对蒙脱土吸附水性状的调控机理。
    Abstract: The natural montmorillonite is modified by the ionic soil stabilizer (ISS) with different concentrations and the isothermal water vapor adsorption tests are conducted for both the raw and modified soils under the relative humidity (P/P0) ranging from 0.01 to 0.95. The evolution of the dominated factors in the process of hydration of montmorillonite is interpreted by combining the analyses of variation of d001 with P/P0, water retention velocity curves and results of infrared spectroscopy (IR). Finally, the boundary values of P/P0 in hydration sequences are proposed, and the water retention equations are derived through hydration energy of cations and surface of minerals, respectively. The results show that for the calcium montmorillonite, the exchangeable cations interact with water molecules to form monolayer of hydration shell at the range of 0<P/P0<0.15~0.2 firstly and then form bilayer at 0.15~0.2<P/P0<0.45~0.5, followed by hydration on basal surface of crystal layer at 0.45~0.5<P/P0<0.8~0.9 to form the integrated bilayer water film. The water retention capacity is dominated by the hydratability of interlamellar cations merely at extremely high suction range (ψ>200 MPa), and mainly influenced by the Van der Waals force between basal surface and water molecules when suction is lower (15<ψ<200 MPa). At a certain suction range, ISS weakens the water retention capacity of montmorillonite by changing the specific physic-chemical parameters. The derived water retention equations can accurately predict the test results and also provide a quantitative insight into the mechanism of action by ISS.
  • [1] HENSEN E J M, SMIT B. Why clays swell[J]. Journal of Physical Chemistry B, 2002, 106(49): 12664-12667.
    [2] 贾景超. 膨胀土膨胀机理及细观膨胀模型研究[D]. 大连: 大连理工大学, 2010.
    (JIA Jing-chao.Study on the swelling mechanism and mesomechanical swelling model of expansive soil[D]. Dalian: Dalian University of Technology, 2010. (in Chinese))
    [3] DEVINEAU K, BIHANNIC I, MICHOT L, et al.In situ neutron diffraction analysis of the influence of geometric confinement on crystalline swelling of montmorillonite[J]. Applied Clay Science, 2006, 31(1/2): 76-84.
    [4] LAIRD D A.Influence of layer charge on swelling of smectites[J]. Applied Clay Science, 2006, 34(1/2/3/4): 74-87.
    [5] FABRICE S, OLIVIER B, JEANMARC D, et al.Determination of the driving force for the hydration of the swelling clays from computation of the hydration energy of the interlayer cations and the clay layer[J]. J Phys Chem C, 2008, 111(35): 13170-13176.
    [6] KELLEY W P, JENNY H, BROWN S M.Hydration of minerals and soil colloids in relation to crystal structure[J]. Soil Science, 1936, 41(4): 259-274.
    [7] 库里契茨基. 土中结合水译文集[M]. 李生林, 译. 北京: 地质出版社, 1982.
    (CURRYCHISIKI. The soil bound water[M]. LI Sheng-lin, tran. Beijing: Geological Press, 1982. (in Chinese))
    [8] 王平全. 黏土表面结合水定量分析及水合机制研究[D].成都: 西南石油学院, 2001.
    (WANG Ping-quan.The study for quantitative analysis of water on clays and their hydration mechanism[D]. Chengdu: Southwest Petroleum Institute, 2001. (in Chinese))
    [9] CASES J M, BEREND I, BESSON G, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonit 1: the sodium-exchanged form[J]. Langmuir, 1992, 8(11): 2730-2739.
    [10] CASES J M. BEREND I, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 3: the Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms[J]. Clays & Clay Minerals, 1997, 45(1): 8-22.
    [11] BEREND I, CASES J M, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites 2: the Li+, Na+, K+, Rb+and Cs+-exchanged forms[J]. Clays & Clay Minerals, 1995, 43(3): 324-336.
    [12] DUECK A.Laboratory results from hydro-mechanical tests on a water unsaturated bentonite[J]. Engineering Geology, 2008, 97(1/2): 15-24.
    [13] BACHMANN J, VAN D P R R. A review on recent developments in soil water retention theory: interfacial tension and temperature effects[J]. Journal of Plant Nutrition & Soil Science, 2002, 165(4): 468-478.
    [14] PETERSEN L W, MOLDRUP P, JACOBSEN O H, et al.Relations between specific surface area and soil physical and chemical properties[J]. Soil Science, 1996, 161(1): 9-21.
    [15] FRYDMAN S, BAKER R.Theoretical soil-water characteristic curves based on adsorption, cavitation, and a double porosity model[J]. International Journal of Geomechanics, 2009, 9(6): 250-257.
    [16] SILVA O, GRIFOLL J.A soil-water retention function that includes the hyper-dry region through the BET adsorption isotherm[J]. Water Resources Research, 2007, 43(11): 398-408.
    [17] HATCH C D, WIESE J S, CRANE C C, et al.Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(3): 1790.
    [18] WOODRUFF W, REVIL A.CEC-normalized clay-water sorption isotherm[J]. Water Resources Research, 2011, 47: W11502.
    [19] REVIL A, LU N.Unified water isotherms for clayey porous materials[J]. Water Resources Research, 2013, 49(9): 5685-5699.
    [20] MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
    [21] DIOS C G, HUERTAS F J, ROMERO T E, et al.Adsorption of water vapor by homoionic montmorillonites: heats of adsorption and desorption[J]. Journal of Colloid & Interface Science, 1997, 185(2): 343.
    [22] 陈善雄, 孔令伟, 郭爱国. 膨胀土工程特性及其石灰改性试验研究[J]. 岩土力学, 2002, 23(增刊1): 9-12.
    (CHEN Shan-xiong, KONG Ling-wei, GUO Ai-guo.Experimental research on engineering properties of expansive soil and lime stabilized soil[J]. Rock and Soil Mechanics, 2002, 23(S1): 9-12. (in Chinese))
    [23] AL-MUKHTAR M, LASLEDJ A, ALCOVER J F.Behaviour and mineralogy changes in lime-treated expansive soil at 50℃[J]. Applied Clay Science, 2010, 50(2): 199-203.
    [24] CHEW S H, KAMRUZZAMAN A H M, LEE F H. Physicochemical and engineering behavior of cement treated clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2004, 130(7): 696-706.
    [25] RAO S M, REDDY B V V, MUTTHARAM M. The impact of cyclic wetting and drying on the swelling behaviour of stabilized expansive soils[J]. Engineering Geology, 2001, 60(1/2/3/4): 223-233.
    [26] YAZDANDOUST F, YASROBI S S.Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays[J]. Applied Clay Science, 2010, 50(4): 461-468.
    [27] SCHOLEN D E.Stabilizer mechanisms in nonstandard stabilizers[C]// 6th International Conference on Low Volume Roads. Minneapolis, 1995.
    [28] PETRY T, DAS B.Evaluation of chemical modifiers and stabilizers for chemically active soils: clays[J]. Transportation Research Record Journal of the Transportation Research Board, 2001, 1757(1): 43-49.
    [29] RAUCH A, HARMON J, KATZ L, et al.Measured effects of liquid soil stabilizers on engineering properties of clay[J]. Transportation Research Record Journal of the Transportation Research Board, 2002, 1787(1): 33-41.
    [30] 汪益敏, 张丽娟, 苏卫国, 等. ISS加固土的试验研究[J]. 公路, 2001(7): 39-43.
    (WANG Yi-min, ZHANG Li-juan, SU Wei-guo, et al.Experimental study of stabilizing soil by adapting ISS[J]. Highway, 2001(7): 39-43. (in Chinese))
    [31] 刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2290.
    (LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al.Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese))
    [32] KATZ L, RAUCH A, LILJESTRAND H, et al.Mechanisms of soil stabilization with liquid ionic stabilizer[J]. Transportation Research Record, 2001, 1757(1): 50-57.
    [33] 刘清秉, 项伟, 崔德山, 等. 离子土固化剂改良膨胀土的机理研究[J]. 岩土工程学报, 2011, 33(4): 648-654.
    (LIU Qing-bing, XIANG Wei, CUI De-shan, et al.Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648-654. (in Chinese))
    [34] 雷雯. 新型土壤固化剂的制备及应用[D]. 武汉: 中国地质大学(武汉), 2014.
    (LEI Wen. Development and application of a new ionic soil stabilizer[D]. Wuhan: China University of Geosciences(Wuhan), 2014. (in Chinese))
    [35] KHORSHIDI M, LU N.Intrinsic relation between soil water retention and cation exchange capacity[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 143(4): 4016119.
    [36] ISRAELACHVILI J N.Intermolecular and surface forces[M]. 3rd ed. Amsterdam: Academic Press, 1992: 59-65.
    [37] FERRAGE E, LANSON E, SAKHAROV B, et al.Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties[J]. American Mineralogist, 2005, 90(8/9): 1358-1374.
    [38] CHIPERA S J, CAREY J W, BISH D L.Controlled-humidity XRD analyses: application to the study of smectite expansion/contraction[J]. Advances in X-Ray Analysis, 1997, 39: 713-722.
    [39] 须藤俊男. 黏土矿物学[M]. 严寿鹤, 等, 译. 北京: 地质出版社, 1981.
    (SUDO T.Clay minerals[M]. YAN Shou-he, et al, trans. Beijing: Geological Press, 1981. (in Chinese))
    [40] 崔德山. 离子土壤固化剂对武汉红色黏土结合水作用机理研究[D]. 武汉: 中国地质大学 (武汉), 2009.
    (CUI De-shan. Research on the reaction mechanism of adsorbed water in red clay of Wuhan with ionic soil stabilizer[D]. Wuhan: China University of Geosciences (Wuhan), 2009. (in Chinese))
    [41] NITAO J J, BEAR J.Potentials and their role in transport in porous media[J]. Water Resources Research, 1996, 32(2): 225-250.
    [42] MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite: II effect of exchangeable ions and lattice swelling as measured by x-ray diffraction[J]. Journal of the American Chemical Society, 1952, 74(6).
    [43] AKIN I D.Clay surface properties by water vapor sorption methods[D]. Madison: University of Wisconsin-Madison, 2014.
    [44] FORESTIER L L, MULLER F, VILLIERAS F, et al.Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue[J]. Applied Clay Science, 2010, 48(1): 18-25.
    [45] KEREN R.Water vapor isotherms and heat of immersion of na/ca-montmorillonite systems: i homoionic clay[J]. Clays & Clay Minerals, 1975, 23(3): 193-200.
    [46] HAMAKER H C.The London—van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072.
    [47] TULLER M, OR D, DUDLEY L M.Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores[J]. Water Resources Research, 1999, 35(7): 1949-1964.
    [48] TULLER M, OR D.Water films and scaling of soil characteristic curves at low water contents[J]. Water Resources Research, 2005, 41(W09403): 319-335.
  • 期刊类型引用(12)

    1. 席玉宇,冯珂,高景明. 超大断面分岔隧道软弱围岩过渡段施工力学特性研究. 价值工程. 2025(08): 56-59 . 百度学术
    2. 王恒. 浅埋偏压隧道管棚注浆加固效应分析. 北方交通. 2024(08): 83-87 . 百度学术
    3. 侯艳娟,张顶立,李然,陈旭,齐伟伟. 深埋三连拱隧道围岩压力计算方法. 力学学报. 2024(11): 3213-3226 . 百度学术
    4. 何丹,郭亚林,林宇亮,肖洪波,张沛然. 地形偏压对连拱隧道支护结构及围岩的影响. 公路交通科技. 2024(11): 167-177 . 百度学术
    5. 李志厚,王安民,陈树汪,陈俊武,邓志云. 无中导连拱隧道受力机理及对策研究. 地下空间与工程学报. 2024(06): 1969-1978 . 百度学术
    6. 姜成业,汤华,邓琴,和振海,毕钛俊. 深埋无中导洞连拱隧道围岩压力计算方法研究. 中南大学学报(自然科学版). 2023(03): 1168-1177 . 百度学术
    7. 刘建生. 大跨度偏压连拱隧道洞口段施工力学性能研究. 公路. 2023(04): 423-428 . 百度学术
    8. 白宏达,王安民,王少飞,张伟,喻佳. 台阶-CRD无中导洞连拱隧道施工响应分析. 公路交通科技. 2023(03): 173-181 . 百度学术
    9. 刘昶,刘辉,邓小钊,张艺,张妞. 偏压连拱隧道非对称中隔墙施工力学特性研究. 交通科学与工程. 2021(03): 50-57+77 . 百度学术
    10. 李占华. 大跨度隧道施工单体洞室开挖方法研究. 工程机械与维修. 2021(05): 182-185 . 百度学术
    11. 余俊,翁贤杰,樊文胜,张连震. 松散地层隧道进洞段管棚注浆加固效应分析. 山东大学学报(工学版). 2020(06): 92-100 . 百度学术
    12. 胡新朋,王登锋,肖本利. 分岔隧道安全高效施工方法优化研究. 隧道建设(中英文). 2020(S2): 210-215 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  299
  • HTML全文浏览量:  8
  • PDF下载量:  181
  • 被引次数: 28
出版历程
  • 收稿日期:  2017-11-06
  • 发布日期:  2019-01-24

目录

    /

    返回文章
    返回