• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

压实黄土平面应变方向的主应力特性

陈存礼, 贾亚军, 王俊甫, 赵杰, 张洋

陈存礼, 贾亚军, 王俊甫, 赵杰, 张洋. 压实黄土平面应变方向的主应力特性[J]. 岩土工程学报, 2018, 40(S1): 16-21. DOI: 10.11779/CJGE2018S1003
引用本文: 陈存礼, 贾亚军, 王俊甫, 赵杰, 张洋. 压实黄土平面应变方向的主应力特性[J]. 岩土工程学报, 2018, 40(S1): 16-21. DOI: 10.11779/CJGE2018S1003
CHEN Cun-li, JIA Ya-jun, WANG Jun-fu, ZHAO Jie, ZHANG Yang. Characteristics of principal stress of compacted loess in plane strain direction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 16-21. DOI: 10.11779/CJGE2018S1003
Citation: CHEN Cun-li, JIA Ya-jun, WANG Jun-fu, ZHAO Jie, ZHANG Yang. Characteristics of principal stress of compacted loess in plane strain direction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 16-21. DOI: 10.11779/CJGE2018S1003

压实黄土平面应变方向的主应力特性  English Version

基金项目: 国家自然科学基金项目(50878183); 陕西省教育厅省级重点实验室重点科研项目(14JS063)
详细信息
    作者简介:

    陈存礼(1964- ),女,博士,教授,博士生导师,主要从事土的静动力学特性研究。E-mail: chencl@xaut.edu.cn。

  • 中图分类号: TU47

Characteristics of principal stress of compacted loess in plane strain direction

  • 摘要: 对不同含水率压实黄土进行等小主动主应力σx的平面应变三轴试验,研究了含水率w及小主动主应力σx对加载过程中平面应变方向主应力σy特性的影响,根据试验结果提出了描述平面应变方向与其它方向主应力双线性关系的表达式,验证了基于典型强度准则的中主应力公式描述压实黄土σy变化的适用性。研究结果表明:在等向固结及初始加载阶段,平面应变方向主应力不是中主应力σ2,而是小主应力σ3;平面应变方向主应力比σy/σx随着主动主应力比R的增大先平缓后快速增大,转折点前后主应力之间分别呈线性和非线性关系;转折点处的主动主应力比Rz大于平面应变方向主应力由小主应力转变为中主应力临界点处的主动主应力比Rc,wσxRz的影响较大,对Rc的影响很小。R较小时,wσx对加载过程中σy/σx几乎没有影响。主应力参数K(=2σy/(σx+σz))与主动主应力比R之间呈双直线;前段为水平直线,K近似为常数Kc;后段为倾斜向上的直线;Kc及直线斜率mwσx的大小无关。提出的双线性函数能较好地预测压实黄土加载过程中σy的变化特性,而仅在土样破坏时,基于Lade-Duncan及SMP准则的中主应力公式的预测值与试验值比较接近。
    Abstract: The plane strain triaxial tests in which the minor active principal stress (also called σx) keeps invariable are performed on the compacted loess with different water contents. The influences of σx and water content (also called w) on characteristics of the principal stress in plane strain direction (also called σy) during loading are studied. Based on the test results, the expressions describing the bilinear relationships between the principal stress in the plane strain direction and that in other directions are proposed. It is verified whether or not σy can be predicted by the expressions for the intermediate principal stress based on different strength criteria for compacted loess. The test results show that σy is not the intermediate principal stress (also called σ2) but the minor principal stress (also called σ3) during the isotropic consolidation and the initial loading stage. The ratio of the principal stress in the plane strain direction to the minor active principal stress (also called σy/σx) fast increases after the gentle development stage with the increase of the ratio of the major active principal stress to the minor one (also called R), and the relationships between the principal stresses are respectively linear and nonlinear before and after the turning point. The ratio of the major active principal stress to the minor one at the turning point (also called Rz) is larger than that at the critical point where σy transforms σ2 to σ3 (also called Rc). w and σx have obvious influences on Rz but little ones on Rc. The effects of w and σx on σy/σx are little as R is small. The relationships between the principal stress parameter (=2σy/(σx+σz), also called K) and R can be describedas two-stage lines. The one is horizontal and K is constant Kc in the first stage. The other one is inclined upward in the second stage. The slope m and Kc are irrelevant to w and σx. The change of σy during the loading can be better predicted by the proposed bilinear function. The predicted results are approximately equal to the test ones only at the failure of soil samples, using the expressions for the intermediate
  • [1] 殷宗泽, 赵航. 中主应力对土体本构关系的影响[J]. 河海大学学报, 1990, 18(5): 54-61.
    (YIN Zong-ze, ZHAO Hang.Effect of middle principal stress on constitutive relationship[J]. Journal of Hohai University, 1990, 18(5): 54-61. (in Chinese))
    [2] 施维成, 朱俊高, 张博, 等. 粗粒土在平面应变条件下的强度特性研究[J]. 岩土工程学报, 2011, 33(12): 1974-1979.
    (SHI Wei-cheng, ZHU Jun-gao, ZHANG Bo, et al.Strength characteristics of coarse-grained soil under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1974-1979. (in Chinese))
    [3] GEORGIADIS K, POTTS D M, ZDRAVKOVIC L.Modelling the shear strength of soils in the general stress space[J]. Computers and Geotechnics, 2004, 31: 357-364.
    [4] SATAKE M.Stress-deformation and strength characteristics of soil under three difference principal stresses[J]. Proceedings of Japan Society of Civil Engineering, 1976, 246: 137-138.
    [5] 罗汀, 姚仰平, 松岡元. 基于SMP准则的土的平面应变强度公式[J]. 岩土力学, 2000, 21(4): 390-393.
    (LUO Ting, YAO Yang-ping, MATSUOKA H.Soil strength equation in plane strain based on SMP[J]. Rock and Soil Mechanics, 2000, 21(4): 390-393. (in Chinese))
    [6] 李刚, 谢云, 陈正汉. 平面应变状态下黏性土破坏时的主应力公式[J]. 岩石力学与工程学报, 2004, 23(18): 3174-3177.
    (LI Gang, XIE Yun, CHEN Zheng-han.Formula of intermediate principal stress at failure for coherent soil inplane strain state[J]. Chinese Journal of Rock Mechanicsand Enginerring, 2004, 23(18): 3174-3177. (in Chinese))
    [7] LEE K L.Comparison of plane strain and triaxial tests on sand[J]. ASCE Journal of Soil Mechanics and Foundation Division, 1970, 96(SM3): 901-923.
    [8] YU M H, HE L N.A new model and theory on yield and failure of materials under the complex stress state[M]// Mechanical behavior of materials-VI. Oxford:Pergamon Press, 1991: 841-846.
    [9] 李广信, 黄永男, 张其光. 土体平面应变方向上的主应力[J]. 岩土工程学报, 2001, 23(3): 358-361.
    (LI Guang-xin, HUANG Yong-nan, ZHANG Qi-guang.The principal stress of soil in the direction of plane strain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 358-361. (in Chinese))
    [10] 李广信, 张其光,黄永男. 等应力比平面应变试验中主应力转换的研究[J]. 岩土力学, 2006, 27(11): 1867-1872.
    (LI Guang-xin, ZHANG Qi-guang, HUANG Yong-nan.Study on transforming of principal stresses in constant stress ration plane strain tests[J]. Rock and Soil Mechanics, 2006, 27(11): 1867-1872. (in Chinese))
    [11] 曹泽民. 结构性对重塑黄土变形强度特性的影响[D]. 西安: 西安理工大学, 2013: 56-65.
    (CAO Ze-min.The influence of structure on deformation and strength of remolded loess[D]. Xi'an: Xi'an University of Technology, 2013: 56-65. (in Chinese))
    [12] 张玉, 邵生俊. 平面应变条件下黄土的竖向加载变形与强度特性分析[J]. 土木工程学报, 2016, 49(3): 112-121.
    (An analysis of vertical loading deformation and strength characteristics of loess under plain strain condition[J]. China Civil Engineering Journal, 2016, 49(3): 112-121. (in Chinese))
    [13] 路德春, 姚仰平, 周安楠. 土体平面应变条件下的主应力关系[J]. 岩石力学与工程学报, 2006, 25(11): 2320-2326.
    (LU De-chun, YAO Yang-ping, ZHOU An-nan.Relationship between principal stresses of soil mass under plane strain condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2320-2326. (in Chinese))
    [14] 俞茂宏, 杨松岩, 刘春阳, 等. 统一平面应变滑移线场理论[J]. 土木土程学报, 1997, 30(2) : 14-26, 41.(YU Mao-hong, YANG Song-yan, LIU Chun-yang, et al. Unified plane-strain slip line field theory system[J]. China Civil Engineering Journal, 1997, 30(2) : 14-26, 41. (in Chinese))
  • 期刊类型引用(33)

    1. 刘富成,陈彦丽. 大型深基坑工程可靠性及施工变形特征分析. 砖瓦. 2025(02): 152-154+158 . 百度学术
    2. 韩苗苗. 不同开挖与支护方式下隧道洞口深基坑仰坡水平位移变形规律研究. 四川水泥. 2024(01): 233-235 . 百度学术
    3. 何润洲,罗胜亮,杨忠平,谢惠珍. 深厚淤泥土深大基坑群同步开挖对紧邻建筑的影响. 地下空间与工程学报. 2024(02): 577-586 . 百度学术
    4. 王安东,张学钢,宁波. 基于数据分解重构和AM-CRU-MLR模型的基坑变形研究与应用. 粉煤灰综合利用. 2024(05): 65-70 . 百度学术
    5. 诸颖,任向东,张健,姚瑶. 软土地区锁扣型钢地下连续墙适用性研究. 工程建设与设计. 2024(23): 36-38 . 百度学术
    6. 李小军. 地下隧道深基坑仰坡开挖与支护数值模拟及安全性分析. 安全与环境学报. 2023(03): 812-818 . 百度学术
    7. 王棣,田大浪. 含裂隙岩质深基坑桩锚支护结构变形特征研究. 岩土工程技术. 2023(02): 238-246 . 百度学术
    8. 高亚鹏,赵文辉,魏锜,杨有海. 某高速铁路明挖隧道黄土深基坑变形规律分析. 兰州工业学院学报. 2023(02): 60-65 . 百度学术
    9. 严长江,李旺,张子辰. 某黄土深基坑开挖变形预测分析. 低温建筑技术. 2023(03): 101-104 . 百度学术
    10. 梁二雷,王冰辉,郑功博,吴静. 临河倾斜互层下深基坑变形及渗流数值分析. 工业建筑. 2023(03): 188-196 . 百度学术
    11. 赵军,胡聪伟,刘飞. 桩锚支护土岩深基坑地表沉降特征分析. 低温建筑技术. 2023(08): 142-145 . 百度学术
    12. 曹卫平,席茂阳,赵呈,赵敏. 局部破坏对内撑式排桩支护基坑影响的模型试验. 水资源与水工程学报. 2023(05): 190-197 . 百度学术
    13. 王钰轲,付宏松,马露. 行车荷载与基坑开挖对新建及既有基坑坑底和地连墙的影响研究. 三峡大学学报(自然科学版). 2022(02): 77-82 . 百度学术
    14. 王贺. 城市双线隧道车站施工工艺优化及稳定性研究. 价值工程. 2022(17): 77-79 . 百度学术
    15. 王贺. 城市地铁高架车站BIM建模及可视化研究. 建筑技术开发. 2022(15): 118-120 . 百度学术
    16. 程学昌. 高孔隙水压地层基坑降水开挖施工技术研究. 山西建筑. 2021(01): 68-69+74 . 百度学术
    17. 罗智勇,宋林波,丁增志,成启航,王海伦. 复杂地铁车站深基坑体系的变形分析. 四川建筑. 2021(01): 99-101 . 百度学术
    18. 李又云,杨立新,刘伟,王欢,贺隆贵,李昊阳. 悬挂式止水帷幕深基坑分级降水开挖变形特性. 科学技术与工程. 2021(05): 1995-2001 . 百度学术
    19. 孔令华,胡军然,牛文宣,于洋,楚袁庆. 邻近老旧房屋狭长深基坑开挖施工数值模拟及周边环境影响性分析. 建筑结构. 2021(S1): 1945-1951 . 百度学术
    20. 苏继超,武俊琦,李媛. 基于青岛上软下硬地层地铁地下连续墙深基坑的变形特征研究. 工程与建设. 2021(03): 506-508 . 百度学术
    21. 赵得杰,毕经东,李浩. 基于ARIMA模型的基坑变形预测研究. 粉煤灰综合利用. 2021(05): 40-45 . 百度学术
    22. 陈世凯,李坤杰,闫洪江,严涛,王二力,罗成勇,刘大刚. 超大埋深基坑降水开挖结构安全性分析及对地表沉降影响. 路基工程. 2020(02): 53-57 . 百度学术
    23. 孙小力,孙铁成,张旭,高晓静,刘灿灿. 地铁基坑开挖数值模拟及变形特征研究. 施工技术. 2020(07): 41-44+53 . 百度学术
    24. 谭伟. 基于AutoMos自动化监测系统在地铁工程中的应用与研究. 土木建筑工程信息技术. 2020(02): 28-36 . 百度学术
    25. 谭伟. 临近边坡地铁基坑开挖数值模拟研究. 土工基础. 2020(02): 176-180 . 百度学术
    26. 丁猛. 密集建筑老城区地铁车站基坑开挖技术. 四川建筑. 2020(02): 67-69 . 百度学术
    27. 蒙国往,农忠建,吴波,黄劲松,韦汉. 地铁车站深基坑开挖变形及数值模拟分析. 中国安全生产科学技术. 2020(07): 145-151 . 百度学术
    28. 王晓静,李立云,杜修力,王子英. 削桩施作诱发基坑本体力学响应数值分析. 防灾科技学院学报. 2020(03): 10-17 . 百度学术
    29. 赵宏宇,高春雷,许利东,童根树,张磊. 采用预应力型钢组合支撑的某软土深基坑监测分析研究. 工程勘察. 2020(11): 7-12 . 百度学术
    30. 吕彦朋,朱宏光,张新冈,刘智军. 铁路数据中心建筑基坑支护关键技术及监测分析. 铁道建筑. 2019(05): 112-116 . 百度学术
    31. 方焘,舒新亮,王海龙,石钰锋. 半刚性半盖挖体系临界施工荷载研究. 兰州交通大学学报. 2019(02): 1-8 . 百度学术
    32. 尹鸿达,罗正东,李检保,黄河,袁朝阳,吴鹏. 富水砂砾石地层基坑开挖超孔压变化规律研究. 市政技术. 2019(05): 246-249 . 百度学术
    33. 刘志刚. 软土地区地铁深基坑监测分析及控制措施研究. 公路. 2019(10): 239-244 . 百度学术

    其他类型引用(39)

计量
  • 文章访问数:  202
  • HTML全文浏览量:  1
  • PDF下载量:  108
  • 被引次数: 72
出版历程
  • 收稿日期:  2017-06-10
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回