• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于随机多项式展开的流固耦合非饱和土坡概率反分析

吴芳, 张璐璐, 郑文棠, 魏鑫

吴芳, 张璐璐, 郑文棠, 魏鑫. 基于随机多项式展开的流固耦合非饱和土坡概率反分析[J]. 岩土工程学报, 2018, 40(12): 2215-2222. DOI: 10.11779/CJGE201812008
引用本文: 吴芳, 张璐璐, 郑文棠, 魏鑫. 基于随机多项式展开的流固耦合非饱和土坡概率反分析[J]. 岩土工程学报, 2018, 40(12): 2215-2222. DOI: 10.11779/CJGE201812008
WU Fang, ZHANG Lu-lu, ZHENG Wen-tang, WEI Xin. Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2215-2222. DOI: 10.11779/CJGE201812008
Citation: WU Fang, ZHANG Lu-lu, ZHENG Wen-tang, WEI Xin. Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2215-2222. DOI: 10.11779/CJGE201812008

基于随机多项式展开的流固耦合非饱和土坡概率反分析  English Version

基金项目: 国家重点基础研究发展计划“973”项目(2014CB049100); 国家自然科学基金项目(51422905, 51679135); 中组部青年拔尖人才计划
详细信息
    作者简介:

    吴 芳(1993- ),女,硕士,主要从事岩土工程概率可靠度与风险分析方面的研究工作。E-mail: cewufang@163.com。

  • 中图分类号: TU47

Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion

  • 摘要: 降雨入渗条件下非饱和土坡流固耦合作用复杂,具有高度非线性的特点,一般采用数值方法模拟。数值模型计算量大已成为监测数据概率反分析的重要制约因素。提出一种基于随机多项式展开(PCE)的概率反分析方法。该方法采用随机多项式展开构建土性参数与数值模型响应的显式函数,作为概率反分析中原数值模型的代替模型,与基于贝叶斯理论和马尔可夫链蒙特卡罗(MCMC)模拟的概率反分析方法相结合,从而有效提高非饱和土坡流固耦合参数概率反分析的效率。通过降雨入渗非饱和土坡算例研究,结果表明,与基于数值模型的常规随机反分析相比,两种方法在后验分布统计值、95%置信区间等结果非常接近,基于PCE的概率反分析计算效率显著提高,结果可靠。
    Abstract: The seepage and stress-deformation in an unsaturated slope under rainfall infiltration are interacted with high nonlinearity. Numerical models are commonly adopted to solve the coupled governing equations. Tremendous computational cost of numerical modeling is the main obstacle for probabilistic back analysis with field monitoring data. A probabilistic back analysis method based on polynomial chaos expansion (PCE) is proposed in this study. PCE approximation is used to construct the explicit functions between unsaturated soil parameters and model responses to replace the original numerical model. The PCE surrogate model is adopted in parameter posterior inference with Markov chain Monte Carlo (MCMC) simulation based on the Bayesian theory. An example of unsaturated soil slope under rainfall infiltration is presented to illustrate the efficiency of the proposed method. The statistics of posterior distribution and 95% uncertainty bounds obtained using the PCE-based method are close to the results of the traditional back analysis based on the original numerical model. In addition, the proposed new method can significantly improve the efficiency of model calibration.
  • [1] FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993.
    [2] ZHANG L L, ZHANG L M, TANG W H.Rainfall-induced slope failure considering variability of soil properties[J]. Géotechnique, 2005, 55(2): 183-188.
    [3] WONG T T, FREDLUND D G, KRAHN J.Numerical study of coupled consolidation in unsaturated soils[J]. Canadian Geotechnical Journal, 1998, 35(6): 926-937.
    [4] KIM J M.A fully coupled finite element analysis of water-table fluctuation and land deformation in partially saturated soils due to surface loading[J]. International Journal for Numerical Methods in Engineering, 2000, 49(9): 1101-1119.
    [5] 徐晗, 朱以文, 蔡元奇, 等. 降雨入渗条件下非饱和土边坡稳定分析[J]. 岩土力学, 2005, 26(12): 1957-1962.
    (XU Han, ZHU Yi-wen, CAI Yuan-qi, et al.Stability analysis of unsaturated soil slopes under rainfall infiltration[J]. Rock and Soil Mechanics, 2005, 26(12): 1957-1962. (in Chinese))
    [6] WU L Z, ZHANG L M.Analytical solution to 1D coupled water infiltration and deformation in unsaturated soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(6): 773-790.
    [7] 田东方, 刘德富, 王世梅, 等. 土质边坡非饱和渗流场与应力场耦合数值分析[J]. 岩土力学, 2009, 30(3): 810-814.
    (TIAN Dong-fang, LIU De-fu, WANG Shi-mei, et al.Coupling numerical analysis of unsaturated seepage and stress fields for soil slope[J]. Rock and Soil Mechanics, 2009, 30(3): 810-814. (in Chinese))
    [8] 杨林德, 黄伟, 王聿. 初始地应力位移反分析的有限单元法[J]. 同济大学学报, 1985(4): 15-20.
    (YANG Lin-de, HUANG Wei, WANG Yu.The finite element method for determining the initial earth stress by displacements in surrounding rock[J]. Journal of Tongji University, 1985(4): 15-20. (in Chinese))
    [9] 杨志法, 丁恩保, 张三旗. 地下工程平面问题弹性有限元图谱[M]. 北京: 科学出版社, 1989.
    (YANG Zhi-fa, DING En-bao, ZHANG San-qi.Elastic mapping finite element method for plane problem of under ground engineering[M]. Beijing: Science Press, 1989. (in Chinese))
    [10] 黄宏伟, 孙钧. 基于Bayesian广义参数反分析[J]. 岩石力学与工程学报, 1994, 13(3): 219-228.
    (HUANG Hong-wei, SUN Jun.Generalized parameters back analysis method based on Bayesian theory[J]. Chinese Journal of Rock Mechanics and Engineering, 1994, 13(3): 219-228. (in Chinese))
    [11] 冯夏庭, 张治强, 杨成祥, 等. 位移反分析的进化神经网络方法研究[J]. 岩石力学与工程学报, 1999, 18(5): 529-533.
    (FENG Xia-ting, ZHANG Zhi-qiang, YANG Cheng-xiang, et al.Study on genetic neural network method of displacement back analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 529-533. (in Chinese))
    [12] 陈斌, 刘宁, 卓家寿. 岩土工程反分析的扩展贝叶斯法[J]. 岩石力学与工程学报, 2004, 23(4): 555-560.
    (CHEN Bin, LIU Ning, ZHUO Jia-shou.Extended Bayesian method of inverse analysis in geoengineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 555-560. (in Chinese))
    [13] ZHANG J, TANG W H, ZHANG L M.Efficient probabilistic back-analysis of slope stability model parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(1): 99-109.
    [14] ZHANG L L, ZHANG J, ZHNAG L M, et al.Back analysis of slope failure with Markov chain Monte Carlo simulation[J]. Computers and Geotechnics, 2010, 37(7): 905-912.
    [15] ZHANG L L, ZUO Z B, YE G L, et al.Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope[J]. Computers and Geotechnics, 2013, 48: 72-81.
    [16] JUANG C H, LUO Z, ATAMTURKTUR S, et al.Bayesian updating of soil parameters for braced excavations using field observations[J]. Journal of Geotechnical and Geo- environmental Engineering, 2012, 139(3): 395-406.
    [17] KELLY R, HUANG J.Bayesian updating for one- dimensional consolidation measurements[J]. Canadian Geotechnical Journal, 2015, 52(9): 1318-1330.
    [18] LI S, ZHAO H, RU Z, et al.Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope[J]. Engineering Geology, 2016, 203: 178-190.
    [19] 吴礼舟, 张利民, 黄润秋, 等. 非饱和土的变形与渗流耦合的一维解析分析及参数研究[J]. 岩土工程学报, 2009, 31(9): 1450-1455.
    (WU Li-zhou, ZHANG Li-ming, HUANG Run-qiu, et al.One-dimensional analytical analysis and parameter study of coupled deformation and seepage in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1450-1455. (in Chinese))
    [20] 黄淑萍. 基于观点法的谱随机有限元分析-随机响应面法[J]. 计算力学学报, 2007, 24(2): 173-180.
    (HUANG Shu-ping.A collocation-based spectral stochastic finite element analysis-stochastic response surface approach[J]. Chinese Journal of Computational Mechanics, 2007, 24(2): 173-180. (in Chinese))
    [21] HUANG S P, MAHADEVAN S, REBBA R.Collocation- based stochastic finite element analysis for random field problems[J]. Probabilistic Engineering Mechanics, 2007, 22(2): 194-205.
    [22] HUANG S P, LIANG B, PHOON K K.Geotechnical probabilistic analysis by collocation-based stochastic response surface method: An Excel add-in implementation[J]. Georisk, 2009, 3(2): 75-86.
    [23] LI D Q, CHEN Y F, LU W B, et al.Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers & Geotechnics, 2011, 38(1): 58-68.
    [24] 李典庆, 蒋水华, 周创兵. 基于非侵入式随机有限元法的地下洞室可靠度分析[J]. 岩土工程学报, 2012, 34(1): 123-129.
    (LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing.Reliability analysis of underground rock caverns using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 123-129. (in Chinese))
    [25] JIANG S H, LI D Q, CAO Z J, et al.Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2015, 141(2): 04014096.
    [26] BISHOP A W.The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39): 859-863.
    [27] FREDLUND D G, MORGENSTERN N R, WIDGER R A.The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321.
    [28] ZHANG F, IKARIYA T.A new model for unsaturated soil using skeleton stress and degree of saturation as state variables[J]. Soils and Foundations, 2011, 51(1): 67-81.
    [29] RICHARD L A.Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333.
    [30] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892--898.
    [31] MUALEM Y.A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
    [32] GHANEM R G, SPANOS P D.Stochastic finite elements: a spectral approach[M]. New York: Springer-Verlag, 2003.
    [33] BAECHER G B, CHRISTIAN J T.Reliability and statistics in geotechnical engineering[M]. New York: John Wiley & Sons, 2005.
    [34] BLATMAN G, SUDRET B.An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[J]. Probabilistic Engineering Mechanics, 2010, 25(2): 183-197.
    [35] XIU D.Efficient collocational approach for parametric uncertainty analysis[J]. Communications in Computational Physics, 2007, 2(2): 293-309.
    [36] SMOLJAK S A.Quadrature and interpolation formulae on tensor products of certain function classes[J]. Doklady Akademii Nauk Sssr, 1963, 4(5): 240-243.
    [37] NOBILE F, TEMPONE R, WEBSTER C G.A sparse grid stochastic collocation method for partial differential equations with random input data[J]. SIAM Journal on Numerical Analysis, 2008, 46(5): 2309-2345.
    [38] LALOY E, ROGIERS B, VRUGT J A, et al.Efficient posterior exploration of a high-dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion[J]. Water Resources Research, 2013, 49(5): 2664-2682.
    [39] BOX G E P, TIAO G C. Bayesian inference in statistical analysis[M]. New York: John Wiley & Sons, 2011.
    [40] VRUGT J A, TER BRAAK C J F, CLARK M P, et al. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation[J]. Water Resources Research, 2008, 44(12): 5121-5127.
    [41] GELMAN A, RUBIN D B.Inference from iterative simulation using multiple sequences[J]. Statistical Science, 1992: 457-472.
    [42] ZHANG L L, LI J H, LI X, et al.Rainfall-induced soil slope failure: stability analysis and probabilistic assessment[M]. Boca Raton: CRC Press, 2016.
  • 期刊类型引用(3)

    1. 陈志敏,易明炀,杨志强,王壹敏. 埋深和水土含量对松散岩堆抗剪强度的影响. 铁道建筑. 2024(02): 112-117 . 百度学术
    2. 张赓旺,宋嘉杰. 含水率及填充土含量对松散岩堆体抗剪强度的影响规律. 高速铁路技术. 2023(05): 34-39 . 百度学术
    3. 祝艳波,刘振谦,李文杰,苗帅升,李红飞,兰恒星. 黄土-三趾马红土滑坡滑带土的长期强度影响因素研究. 水文地质工程地质. 2022(02): 148-156 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  359
  • HTML全文浏览量:  12
  • PDF下载量:  228
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-10-08
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回