• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冲击荷载作用下岩石动态响应预测研究

刘杰, 冯世国, 李天斌, 王瑞红, 雷岚, 王飞

刘杰, 冯世国, 李天斌, 王瑞红, 雷岚, 王飞. 冲击荷载作用下岩石动态响应预测研究[J]. 岩土工程学报, 2018, 40(11): 2022-2030. DOI: 10.11779/CJGE201811008
引用本文: 刘杰, 冯世国, 李天斌, 王瑞红, 雷岚, 王飞. 冲击荷载作用下岩石动态响应预测研究[J]. 岩土工程学报, 2018, 40(11): 2022-2030. DOI: 10.11779/CJGE201811008
LIU Jie, FENG Shi-guo, LI Tian-bin, WANG Rui-hong, LEI Lan, WANG Fei. Prediction of dynamic response of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2022-2030. DOI: 10.11779/CJGE201811008
Citation: LIU Jie, FENG Shi-guo, LI Tian-bin, WANG Rui-hong, LEI Lan, WANG Fei. Prediction of dynamic response of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2022-2030. DOI: 10.11779/CJGE201811008

冲击荷载作用下岩石动态响应预测研究  English Version

基金项目: 成都理工大学地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2016K023); 国家自然科学基金项目(51439003, 51579138,51479102); 湖北省教育厅项目(D20161202); 湖北省杰出青年人才计划项目(2018CFA065); 三峡大学硕士学位论文培优基金(2018SSPY024)
详细信息
    作者简介:

    刘 杰(1979- ),男,教授,博士生导师,主要从事岩土边坡工程及卸荷岩体力学方面的教学与研究。E-mail:liujiea@126.com。

    通讯作者:

    李天斌,E-mail:ltb@cdut.edu.cn

  • 中图分类号: TU45

Prediction of dynamic response of rock under impact loads

  • 摘要: 利用已有大理岩对冲击波的动态响应图,验证在0.1 Hz不同加载方式下提出的岩石非线性动态响应预测模型及预测公式的适用性和合理性,提出加载速率波形曲线函数的适用条件。经研究表观弹性模量的拟合系数,提出了冲击压实系数a和冲击初始弹性模量b,以及岩样内部裂隙孔洞的压密效应系数a1和滑移错动效应系数a2,且有a=a1+a2,a1>0,a2<0。指出当岩样受到荷载作用时,岩样的压密作用与滑移错动作用是同时存在的,在加载段,|a1|<|a2|,在卸载段,|a1|>|a2|,致使加载段a<0,卸载段a>0。定义了加卸载速率响应比β,表征卸载段平均切线模量与加载段平均切线模量的比值,β值越大岩石的破坏程度越大,不同频率下,砂岩在三角波和正弦波加载方式下均有β≈2。各应变片的应变、变形速率、能量值的实测值与计算值均吻合较好,证明了在低速荷载下提出的岩石非线性动态响应预测模型及预测公式在高速冲击波随时间的毫秒级变化规律情况下具有较好的适用性和合理性,拓宽了该预测公式和模型的应用范围,对位移控制严格的工程设计和施工有现实意义。
    Abstract: The existing dynamic response diagram of marble to shock waves is used to verify the applicability and rationality of prediction model and prediction formula for the nonlinear dynamic response of rock under low velocity loading. The applicable conditions of the loading rate waveform function are proposed. Based on the study of the apparent elastic modulus of the fitting coefficient,the impact compaction coefficient a and the impact initial elastic modulus b,as well as the compaction action a1 and slip action a2 of the fractured voids in a rock sample, are proposed, and a=a1+a2,a1>0,a2<0. When it is subjected to the action of loads, the compaction degree of the rock sample and slip action exist simultaneously. In the loading section,|a1|<|a2|,and in the unloading section, |a1|>|a2|. That causes a<0 in the loading stage and a>0 at the unloading section. The loading-unloading rate response ratio β,which represents the ratio of the average tangent modulus of the unloading section to the average tangent modulus of the loading section, is defined. As the value of β increases, the degree of rock damage is also greater. At different frequencies, the sandstone has β≈2 in the loading mode of triangular waves and sine waves. The measured values of strain, deformation rate and energy value of each strain gauge are in good agreement with the calculated ones. It is proved that the nonlinear dynamic response prediction model and prediction formula for rock under low velocity loads have good applicability and rationality in the case of high-speed shock waves with millisecond time variation, which broadens the application range of the prediction formula and model. It is helpful to the design and construction of the project with strict displacement control.
  • [1] TUTUNCU A N, PODIO A L, GREGORY A R, et al.Nonlinear viscoelastic behavior of sedimentary rocks, part Ⅰ: effect of frequency and strain amplitude[J]. Geophysics, 1998.
    [2] GORDON R B, DAVIS L A.Velocity and attenuation of seismic waves in imperfectly elastic rock[J]. Journal of Geophysical Research, 1968, 73: 3917-3935.
    [3] MCCALL K R, GUYER R A.Equation of state and wave propagation in hysteretic nonlinear elastic material[J]. Journal of Geophysical Research, 1994, 99(B12): 23887-23897.
    [4] 席道瑛, 刘斌, 田象燕. 饱和岩石的各向异性及非线性黏弹性响应[J]. 地球物理学报, 2002, 45(1): 101-111.
    (XI Dao-ying, LIU Bin, TIAN Xiang-yan.Anisotropy and nonlinear viscoelastic behavior of saturated rocks[J]. Chinese Journal of Geophysics, 2002, 45(1): 101-111. (in Chinese))
    [5] 焦贵德, 赵淑萍, 马巍, 等. 循环荷载下冻土的滞回圈演化规律[J]. 岩土工程学报, 2013, 35(7): 1343-1349.
    (JIAO Gui-de, ZHAO Shu-ping, MA Wei, et al.Evolution laws of hysteresis loops of frozen soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1343-1349. (in Chinese))
    [6] 高文学, 杨军, 黄风雷. 强冲击载荷下岩石本构关系研究[J]. 北京理工大学学报, 2000, 20(2): 165-170.
    (GAO Wen-xue, YANG Jun, HUANG Feng-lei.The constitutive relation of rock under strong impact loading[J]. Journal of Beijing Institute of Technology, 2000, 20(2): 165-170. (in Chinese))
    [7] 刘石, 许金余, 陈腾飞, 等. 基于SHPB试验的岩石动态力学响应分析[J]. 地下空间与工程学报, 2013, 9(5): 992-995.
    (LIU Shi, XU Jin-yu, CHEN Teng-fei, et al.Study on dynamic response of rock based on split hopkinson pressure bar test[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5) 992-995. (in Chinese))
    [8] 崔晨光. 冲击荷载下岩石非线性变形与损伤研究[D]. 秦皇岛: 燕山大学, 2016.
    (CUI Chen-guang.Study on nonlinear deformation and damage of rock under impulse loading[D]. Qinghuangdao: Yanshan University, 2016. (in Chinese))
    [9] 刘杰, 李建林, 邓华锋, 等. 宜昌砂岩三角波加载段变形速率预测研究模型[J]. 岩土力学与工程学报, 2010, 29(3): 633-639.
    (LIU Jie, LI Jian-lin, DENG Hua-feng, et al.Study of prediction model for triangular wave loading section deformation rate of Yichang sandestone[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 633-639. (in Chinese))
    [10] 刘杰, 李建林, 骆世威, 等. 0.1Hz正弦波不同载荷峰值砂岩位移速率和能量预测[J]. 采矿与安全工程学报, 2013, 30(4): 566-572.
    (LIU Jie, LI Jian-lin, LUO Shi-wei, et al.Displacement rate and energy simulation of sandstone under different peak loadings of 0.1 Hz sine wave[J]. Journal of Mining & Safety Engineering, 2013, 30(4): 566-572. (in Chinese))
    [11] 席道瑛, 郑永来, 张涛. 大理岩和砂岩动态本构实验研究[J]. 爆炸与冲击, 1995, 15(3): 259-266.
    (XI Dao-ying, ZHENG Yong-lai, ZHANG Tao.The experimental research in dynamic constitutive laws of marble and shale[J]. Explosion and Shock Waves, 1995, 15(3): 259-266. (in Chinese))
    [12] 席道瑛, 郑永来, 张涛. 应力波在砂岩中的衰减[J]. 地震学报, 1995, 17(1): 62-67.
    (XI Dao-ying, ZHENG Yong-lai, ZHANG Tao.The decay of stress wave in the sandstone[J]. Acta Seismologic Sinica, 1995, 17(1): 62-67. (in Chinese))
    [13] 席军, 余勇, 席道瑛. 大理岩对多次冲击波的非线性动态响应[J]. 岩土力学与工程学报, 2011, 30(1): 2850-2857.
    (XI Jun, YU Yong, XI Dao-ying.Nonlinear dynamic response of marble to repeated shock wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 2850-2857. (in Chinese))
    [14] 刘杰, 胡静, 李建林, 等. 动载作用下砂岩变形速率及能量毫秒级模拟研究[J]. 岩土力学, 2014, 35(12): 3403-3412.
    (LIU Jie, HU Jing, LI Jian-lin, et al.Study of deformation rate of sandstone under dynamic loading ang energy millisecond simulation[J]. Rock and Soil Mechanics, 2014, 35(12): 3403-3412. (in Chinese))
  • 期刊类型引用(5)

    1. 熊金波,左小华,徐文彬. 凸型边坡露天境界外矿体开采稳定性研究. 现代矿业. 2022(05): 64-67+73 . 百度学术
    2. 王余鹏. 露天弃碴场边坡失稳破坏与防治策略研究——以白鹤山隧道弃碴场为例. 长沙大学学报. 2021(02): 44-49 . 百度学术
    3. 张嘉凡,高壮,程树范,张慧梅. 煤岩HJC模型参数确定及液态CO_2爆破特性研究. 岩石力学与工程学报. 2021(S1): 2633-2642 . 百度学术
    4. 杨建华,代金豪,姚池,蒋水华,姜清辉. 岩石高边坡爆破开挖损伤区岩体力学参数弱化规律研究. 岩土工程学报. 2020(05): 968-975 . 本站查看
    5. 王志,秦文静,张丽娟. 含裂隙岩石注浆加固后静动态力学性能试验研究. 岩石力学与工程学报. 2020(12): 2451-2459 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  305
  • HTML全文浏览量:  4
  • PDF下载量:  171
  • 被引次数: 11
出版历程
  • 收稿日期:  2017-09-11
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回