• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

隧道岩溶管道型突涌水动态演化特征及涌水量综合预测

王健华, 李术才, 李利平, 许振浩

王健华, 李术才, 李利平, 许振浩. 隧道岩溶管道型突涌水动态演化特征及涌水量综合预测[J]. 岩土工程学报, 2018, 40(10): 1880-1888. DOI: 10.11779/CJGE201810015
引用本文: 王健华, 李术才, 李利平, 许振浩. 隧道岩溶管道型突涌水动态演化特征及涌水量综合预测[J]. 岩土工程学报, 2018, 40(10): 1880-1888. DOI: 10.11779/CJGE201810015
WANG Jian-hua, LI Shu-cai, LI Li-ping, XU Zhen-hao. Dynamic evolution characteristics and prediction of water inflow of karst piping-type water inrush of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1880-1888. DOI: 10.11779/CJGE201810015
Citation: WANG Jian-hua, LI Shu-cai, LI Li-ping, XU Zhen-hao. Dynamic evolution characteristics and prediction of water inflow of karst piping-type water inrush of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1880-1888. DOI: 10.11779/CJGE201810015

隧道岩溶管道型突涌水动态演化特征及涌水量综合预测  English Version

基金项目: 国家自然科学基金面上基金项目(51479106,51679131); 南京水利科学研究院水文水资源与水利工程科学国家重点实验室开放基金项目(2016491311)
详细信息
    作者简介:

    王健华(1991- ),男,博士研究生,主要从事地下工程灾害控制研究。E-mail: wjh871554917@163.com。

    通讯作者:

    李利平,E-mail:yuliyangfan@163.com

  • 中图分类号: TU46;U45

Dynamic evolution characteristics and prediction of water inflow of karst piping-type water inrush of tunnels

  • 摘要: 建立了隧道岩溶管道型突涌水模型,进行了突涌水过程中动态演化特征分析,结果表明揭露岩溶管道型突涌水的动态演化无明显的时间效应,但空间特征呈现阶段演化的规律,突涌水区域可分为三种典型流速演化区域:管道内部的近似高速稳定区,隧道与岩溶管道临界面附近的流速升高区以及隧道内部灾害水体的衰减-低速稳定区。基于管道内部区域流速动态衰减规律,提出了基于数值分析法和极限(离散)解析法的涌水量综合预测方法,形成揭露岩溶管道型突涌水的涌水量预测体系,并设计了相应的模型试验,进行了涌水量的实时监测,监测结果验证了涌水量综合预测方法的合理性。
    Abstract: A model for karst piping-type water inrush at tunnel site is established, and the dynamic evolution characteristics of water inrush are analyzed. The results show that there is no obvious time effect for the dynamic evolution of karst piping-type water inrush, but the spatial features have the property of phase evolution. The water inrush area can be divided into three typical flow velocity evolution areas: approximate high-velocity stability zone inside the karst pipeline, velocity rising zone near the critical plane and attenuation-low velocity stability zone in the tunnel. Based on the dynamic attenuation law of flow velocity in the inner area of pipeline, the method of limit analysis combined with numerical methods to predict water inflow is put forward, and a prediction system for water inflow is formed. The corresponding model test is designed, and the real-time monitoring of water inflow is carried out. The rationality of the comprehensive prediction method for water inflow is verified.
  • [1] 钱七虎. 地下工程建设安全面临的挑战与对策[J].岩石力学与工程学报, 2012, 31(10): 1945-1956.
    (QIAN Qi-hu.Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956. (in Chinese))
    [2] 石少帅. 深长隧道充填型致灾构造渗透失稳突涌水机理与风险控制及工程应用[D]. 济南: 山东大学, 2014.
    (SHI Shao-shuai.Study on seepage failure mechanism and risk control of water inrush induced by filled disaster structure in deep-long tunnel and engineering applications[D]. Jinan: Shandong University, 2014. (in Chinese))
    [3] 薛禹群. 关于稳定井流模型和Dupuit公式的讨论[J].水利学报, 2011, 42(10): 1252-1256.
    (XUE Yu-qun.A discussion on steady well flow model and Dupuit formula[J]. Journal of Hydraulic Engineering, 2011, 42(10): 1252-1256. (in Chinese))
    [4] 杨天鸿, 陈仕阔, 朱万成, 等. 矿井岩体破坏突水机制及非线性渗流模型初探[J]. 岩石力学与工程学报, 2008, 27(7): 1411-1416.
    (YANG Tian-hong, CHEN Shi-kuo, ZHU Wan-cheng, et al.Water inrush mechanism in mines and nonlinear flow model for fractured rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1411-1416. (in Chinese))
    [5] 李利平. 高风险岩溶隧道突水灾变演化机理及其应用研究[D]. 济南: 山东大学, 2009.
    (LI Li-ping.Study on catastrophe evolution mechanism of karst water inrush and its engineering application of high risk karst tunnel[D]. Jinan: Shandong University, 2009. (in Chinese))
    [6] 陈国庆, 李天斌, 范占锋, 等. 基于不同渗流方程的岩溶隧道涌突水过程模拟[J]. 水文地质工程地质, 2011, 38(4): 8-13.
    (CHEN Guo-qing, LI Tian-bin, FAN Zhan-feng, et al.A study of the process simulation of water burst in a karst tunnel based on different seepage equations[J]. Hydrogeology & Engineering Geology, 2011, 38(4): 8-13. (in Chinese))
    [7] 王建秀, 朱合华, 叶为民. 隧道涌水量的预测及其工程应用[J]. 岩石力学与工程学报, 2004, 23(7): 1150-1152.
    (WANG Jian-xiu, ZHU He-hua, YE Wei-min.Forward and inverse of water inflow into tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 1150-1152. (in Chinese))
    [8] 王者超, 李术才, 梁建毅, 等. 地下水封石油洞库渗水量预测与统计[J]. 岩土工程学报, 2014, 36(8): 1490-1497.
    (WANG Zhe-chao, LI Shu-cai, LI Li-ping, et al.Prediction and measurement of groundwater flow rate of underground crude oil storage caverns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1490-1497. (in Chinese))
    [9] EL TANI M.Circular tunnel in a semi-infinite aquifer[J]. Tunneling and Underground Space Technology, 2003, 18(1): 49-55.
    [10] 倪绍虎, 何世海, 汪小刚, 等. 裂隙岩体水力学特性研究[J]. 岩石力学与工程学报, 2012, 31(3): 488-498.
    (NI Shao-hu, HE Shi-hai, WANG Xiao-gang, et al.Hydraulic properties of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 488-498. (in Chinese))
    [11] 王媛, 秦峰, 夏志皓. 深埋隧道涌水预测非达西模型及数值模拟[J]. 岩石力学与工程学报, 2012, 31(9): 1862-1868.
    (WANG Yuan, QIN Feng, XIA Zhi-hao, et al.Non-darcy flow model and numerical simulation for predicting water inflow in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1862-1868. (in Chinese))
    [12] WU Y S.Non-Darcy flow behavior near high-flux injection wells in porous and fractured formations[J]. Development in Water Science, 2005, 52: 221-233.
    [13] WU Y S.Numerical simulation of single-phase and multiphase non-Darcy flow in porous and fractured reservoirs[J]. Transport in Porous Media, 2002, 49(2): 209-240.
    [14] 王媛, 顾智刚, 倪小东, 等. 光滑裂隙高流速非达西渗流运动规律的试验研究[J]. 岩石力学与工程学报, 2010, 29(7): 1404-1408.
    (WANG Yuan, GU Zhi-gang, NI Xiao-dong, et al.Experimental study of non-darcy water flow through a single smooth fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1404-1408. (in Chinese))
    [15] 仵彦卿. 岩土水力学[M]. 北京: 科学出版社, 2009.
    (WU Yan-qing.Geohydraulics[M]. Beijing: Science Press, 2009. (in Chinese))
    [16] 王健华. 隧道突涌水动态演化特征分析及区域涌水量预测方法[D]. 济南: 山东大学, 2016.
    (WANG Jian-hua.Study on flow dynamic evolution characteristics and regional water inflow prediction method of tunnel water inrush[D]. Jinan: Shandong University, 2016. (in Chinese))
    [17] HWANG Jin-hung, LU Chih-chieh.A semi-analytical method for analyzing the tunnel water in?ow[J]. Tunnelling and Underground Space Technology, 2007, 22(1): 39-46.
    [18] 李树忱, 冯现大, 李术才, 等. 新型固流耦合相似材料的研制及其应用[J]. 岩石力学与工程学报, 2010, 29(2): 281-288.
    (LI Shu-chen, FENG Xian-da, LI Shu-cai, et al.Research and development of a new similar material for solid-fluid coupling and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 281-288. (in Chinese))
    [19] 周毅, 李术才, 李利平, 等. 地下工程流-固耦合试验新技术及其在充填型岩溶管道突水模型试验中的应用[J].岩土工程学报, 2015, 37(7): 1232-1240.
    (ZHOU Yi, LI Shu-cai, LI Li-ping, et al.New technology for fluid-solid coupling tests of underground engineering and its application in experimental simulation of water inrush in filled-type karst conduit[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1232-1240. (in Chinese))
  • 期刊类型引用(3)

    1. 吴德顺,顾晓强,刘鑫. 上海地铁运行引起软土场地振动实测与预测模型研究. 结构工程师. 2023(05): 174-183 . 百度学术
    2. 蒋家文,张琦. 超导磁悬浮列车及超导技术的运用. 智能城市. 2021(18): 136-137 . 百度学术
    3. 邱乐侠,胡启洲,吴翊恺,吴啸宇. 基于多粒度粗糙集与多级可拓的高速磁浮系统综合评判. 交通运输工程与信息学报. 2021(04): 106-117 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  311
  • HTML全文浏览量:  16
  • PDF下载量:  280
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-08-02
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回