• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂质黄土地层中既有隧道上方挖方离心模型试验研究

王希元, 龚伦, 吴金霖, 马相峰, 仇文革, 敖维林, 李洋

王希元, 龚伦, 吴金霖, 马相峰, 仇文革, 敖维林, 李洋. 砂质黄土地层中既有隧道上方挖方离心模型试验研究[J]. 岩土工程学报, 2018, 40(8): 1556-1562. DOI: 10.11779/CJGE201808024
引用本文: 王希元, 龚伦, 吴金霖, 马相峰, 仇文革, 敖维林, 李洋. 砂质黄土地层中既有隧道上方挖方离心模型试验研究[J]. 岩土工程学报, 2018, 40(8): 1556-1562. DOI: 10.11779/CJGE201808024
WANG Xi-yuan, GONG Lun, WU Jin-lin, MA Xiang-feng, QIU Wen-ge, AO Wei-lin, LI Yang. Centrifugal model tests on excavation above existing tunnels in sandy loess strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1556-1562. DOI: 10.11779/CJGE201808024
Citation: WANG Xi-yuan, GONG Lun, WU Jin-lin, MA Xiang-feng, QIU Wen-ge, AO Wei-lin, LI Yang. Centrifugal model tests on excavation above existing tunnels in sandy loess strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1556-1562. DOI: 10.11779/CJGE201808024

砂质黄土地层中既有隧道上方挖方离心模型试验研究  English Version

基金项目: 国家重点研发计划项目(2017YFC0806000); 国家自然科学基金项目(51178399,51478392)
详细信息
    作者简介:

    王希元(1992- ),男,硕士,主要从事隧道及地下工程方向的研究。E-mail:316803032@qq.com。

    通讯作者:

    龚伦,E-mail:gonglun33@126.com

Centrifugal model tests on excavation above existing tunnels in sandy loess strata

  • 摘要: 以既有隧道上方挖方工程为背景,运用离心模型试验方法,研究了砂质黄土地层中既有隧道衬砌围岩压力在上方挖方时的变化规律:提出根据衬砌和围岩是否按刚度分配荷载划分深浅埋、以及是否存在挟持力划分浅埋与超浅埋的标准,得到了1.25D~1.75DD为既有隧道跨度)为深埋和浅埋的分界埋深范围,0.75D~1.25D为浅埋和超浅埋的分界埋深范围;同时发现既有隧道衬砌刚度越大,承载拱范围越小,即刚性支护承载拱边界为1.5D,柔性支护承载拱边界为1.8D;并提出基于衬砌围岩压力相对比例的近接影响分区控制标准,得到刚性支护的强影响区、弱影响区和无影响区分界埋深分别为1.5D,2D,柔性支护的强影响区、弱影响区和无影响区分界埋深分别为1.5D,2.5D;对比0.5D和0.3D挖方步距,发现步距会造成挖方过程中围岩应力路径的差异,施工时宜选用0.3D或更小的挖方步距。试验揭露了砂质黄土地层中既有隧道受上方挖方影响的普遍规律,成果可为类似工程提供借鉴和指导。
    Abstract: Taking the excavation above the existing tunnels as the background, the centrifugal model tests are employed to study the change rule of pressures on the surrounding rock of the existing tunnel linings in sandy loess strata during excavation. The standards are proposed as follows: the deep and shallow tunnels are divided according to whether the loads that the linings and the surrounding rock jointly bear are distributed by the stiffness, and the shallow and ultra shallow tunnels are according to whether there exists a holding force. Then 1.25D~1.75D (D is the span of the existing tunnels) distinguished is obtained as the range of the critical buried depth between the deep and shallow tunnels, and 0.75D~1.25D as the range of the critical buried depth between the shallow and ultra shallow tunnels. Meanwhile, the greater the stiffness of the existing tunnel linings is, the smaller the range of the load-bearing arch is. That is to say, the boundary of the load-bearing arch is 1.5D for rigid supports, and the boundary of the load-bearing arch is 1.8D for flexible supports. The governing criteria for the adjacent influence partition based on the relative ratio of the pressures on the surrounding rock of linings are put forward. For the rigid supports, the critical buried depths of intensive-effect, weak-effect and no-effect areas are 1.5D and 2D, and for the flexible supports, the critical buried depths of intensive-effect, weak-effect and no-effect areas are 1.5D and 2.5D. The comparison between excavation steps of 0.5D and 0.3D indicates that the steps cause the difference of stress paths of the surrounding rock during excavation. So 0.3D or smaller step is suitable to be chosen. The general laws of the existing tunnels in sandy loess strata influenced by the excavation above them are released. The achievements may provide some reference and guidance for similar projects.
  • [1] 关宝树. 隧道工程施工要点集[M]. 北京: 人民交通出版社, 2003.
    (GUAN Bao-shu.The essential collection of tunnel construction[M]. Beijing: China Communications Press, 2003. (in Chinese))
    [2] 关宝树. 隧道力学概论[M]. 成都: 西南交通大学, 1993.
    (GUAN Bao-shu.General theory of tunnel mechanics[M]. Chengdu: Southwest Jiaotong University, 1993. (in Chinese))
    [3] 扈世民. 黄土隧道围岩压力拱效应分析[J]. 铁道学报, 2014, 36(3): 94-99.
    (HU Shi-min.Analysis on pressure-arch effect of surrounding rock in loess tunnel[J]. Journal of The China Railway Society, 2014, 36(3): 94-99. (in Chinese))
    [4] 王航. 既有隧道上方挖方近接施工影响及对策研究[D].成都: 西南交通大学, 2015.
    (WANG Hang.The study on adjacent influence and countermeasures of excavation above existing tunnel[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese))
    [5] 魏纲. 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34(5): 1421-1428.
    (WEI Gang.Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1421-1428. (in Chinese))
    [6] 黄兆纬, 黄信, 胡雪瀛, 等. 基坑开挖对既有地铁隧道变位影响及技术措施分析[J]. 岩土工程学报, 2014, 36(增刊2): 381-385.
    (HUANG Zhao-wei, HUANG Xin, HU Xue-ying, et al.Influence of foundation pit excavation on displacement of existing metro tunnels and technical measures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 381-385. (in Chinese))
    [7] 徐长节, 王伊丽, 徐芫蕾, 等. 新建工程基坑开挖及结构施工对既建下卧隧道的影响研究[J]. 岩土力学, 2015, 36(11): 3201-3209.
    (XU Chang-jie, WANG Yi-li, XU Yuan-lei, et al.Effect of foundation pit excavation and structural construction of new engineering on existing underlying tunnel[J]. Rock and Soil Mechanics, 2015, 36(11): 3201-3209. (in Chinese))
    [8] 孙克国, 仇文革, 王中平, 等. 高速公路改扩建工程对高铁隧道的近接施工影响[J]. 山东大学学报(工学版), 2015, 45(5): 70-76.
    (SUN Ke-guo, QIU Wen-ge, WANG Zhong-ping, et al.Study on approaching excavation influence between expanding projects of expressway and high speed railway tunnel under operation state[J]. Journal of Shandong University (Engineering Science), 2015, 45(5): 70-76. (in Chinese))
    [9] 姚捷. 新建公路施工对赣龙铁路隧道的影响分析[J]. 铁道工程学报, 2013, 30(2): 81-85.
    (YAO Jie.Analysis of influence of new highway construction on tunnel of ganzhou-longyan railway[J]. Journal of Railway Engineering Society, 2013, 30(2): 81-85. (in Chinese))
    [10] 温锁林. 近距离上穿运营地铁隧道的基坑明挖施工控制技术[J]. 岩土工程学报, 2010, 32(增刊2): 451-454.
    (WEN Suo-lin.Construction technology of deep open excavation above running metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 451-454. (in Chinese))
    [11] 胡海英, 张玉成, 杨光华, 等. 基坑开挖对既有地铁隧道影响的实测及数值分析[J]. 岩土工程学报, 2014, 36(增刊2): 431-439.
    (HU Hai-ying, ZHANG Yu-cheng, YANG Guang-hua, et al.Measurement and numerical analysis of effect of excavation of foundation pits on metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 431-439. (in Chinese))
    [12] TAYLOR R N.Geotechnical centrifuge technology[M]. London: Blackie Academic & Professional, 1995.
    [13] 李鹏飞, 赵勇, 张顶立, 等. 基于现场实测数据统计的隧道围岩压力分布规律研究[J]. 岩石力学与工程学报, 2013, 32(7): 1392-1399.
    (LI Peng-fei, ZHAO Yong, ZHANG Ding-li, et al.Study of distribution laws of tunnel surrounding rock pressure based on field measured data statistics[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1392-1399. (in Chinese))
    [14] TB10003—2005 铁路隧道设计规范[S]. 2005.
    (TB10003—2005 Code for design on tunnel of railway[S]. 2005. (in Chinese))
    [15] 张顶立. 隧道及地下工程的基本问题及其研究进展[J]. 力学学报, 2017, 49(1): 3-21.
    (ZHANG Ding-li.Essential issues and their research progress in tunnel and underground engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 3-21. (in Chinese))
计量
  • 文章访问数:  269
  • HTML全文浏览量:  9
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-10
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回