• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xi-yuan, GONG Lun, WU Jin-lin, MA Xiang-feng, QIU Wen-ge, AO Wei-lin, LI Yang. Centrifugal model tests on excavation above existing tunnels in sandy loess strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1556-1562. DOI: 10.11779/CJGE201808024
Citation: WANG Xi-yuan, GONG Lun, WU Jin-lin, MA Xiang-feng, QIU Wen-ge, AO Wei-lin, LI Yang. Centrifugal model tests on excavation above existing tunnels in sandy loess strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1556-1562. DOI: 10.11779/CJGE201808024

Centrifugal model tests on excavation above existing tunnels in sandy loess strata

More Information
  • Received Date: May 10, 2017
  • Published Date: August 24, 2018
  • Taking the excavation above the existing tunnels as the background, the centrifugal model tests are employed to study the change rule of pressures on the surrounding rock of the existing tunnel linings in sandy loess strata during excavation. The standards are proposed as follows: the deep and shallow tunnels are divided according to whether the loads that the linings and the surrounding rock jointly bear are distributed by the stiffness, and the shallow and ultra shallow tunnels are according to whether there exists a holding force. Then 1.25D~1.75D (D is the span of the existing tunnels) distinguished is obtained as the range of the critical buried depth between the deep and shallow tunnels, and 0.75D~1.25D as the range of the critical buried depth between the shallow and ultra shallow tunnels. Meanwhile, the greater the stiffness of the existing tunnel linings is, the smaller the range of the load-bearing arch is. That is to say, the boundary of the load-bearing arch is 1.5D for rigid supports, and the boundary of the load-bearing arch is 1.8D for flexible supports. The governing criteria for the adjacent influence partition based on the relative ratio of the pressures on the surrounding rock of linings are put forward. For the rigid supports, the critical buried depths of intensive-effect, weak-effect and no-effect areas are 1.5D and 2D, and for the flexible supports, the critical buried depths of intensive-effect, weak-effect and no-effect areas are 1.5D and 2.5D. The comparison between excavation steps of 0.5D and 0.3D indicates that the steps cause the difference of stress paths of the surrounding rock during excavation. So 0.3D or smaller step is suitable to be chosen. The general laws of the existing tunnels in sandy loess strata influenced by the excavation above them are released. The achievements may provide some reference and guidance for similar projects.
  • [1]
    关宝树. 隧道工程施工要点集[M]. 北京: 人民交通出版社, 2003.
    (GUAN Bao-shu.The essential collection of tunnel construction[M]. Beijing: China Communications Press, 2003. (in Chinese))
    [2]
    关宝树. 隧道力学概论[M]. 成都: 西南交通大学, 1993.
    (GUAN Bao-shu.General theory of tunnel mechanics[M]. Chengdu: Southwest Jiaotong University, 1993. (in Chinese))
    [3]
    扈世民. 黄土隧道围岩压力拱效应分析[J]. 铁道学报, 2014, 36(3): 94-99.
    (HU Shi-min.Analysis on pressure-arch effect of surrounding rock in loess tunnel[J]. Journal of The China Railway Society, 2014, 36(3): 94-99. (in Chinese))
    [4]
    王航. 既有隧道上方挖方近接施工影响及对策研究[D].成都: 西南交通大学, 2015.
    (WANG Hang.The study on adjacent influence and countermeasures of excavation above existing tunnel[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese))
    [5]
    魏纲. 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34(5): 1421-1428.
    (WEI Gang.Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1421-1428. (in Chinese))
    [6]
    黄兆纬, 黄信, 胡雪瀛, 等. 基坑开挖对既有地铁隧道变位影响及技术措施分析[J]. 岩土工程学报, 2014, 36(增刊2): 381-385.
    (HUANG Zhao-wei, HUANG Xin, HU Xue-ying, et al.Influence of foundation pit excavation on displacement of existing metro tunnels and technical measures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 381-385. (in Chinese))
    [7]
    徐长节, 王伊丽, 徐芫蕾, 等. 新建工程基坑开挖及结构施工对既建下卧隧道的影响研究[J]. 岩土力学, 2015, 36(11): 3201-3209.
    (XU Chang-jie, WANG Yi-li, XU Yuan-lei, et al.Effect of foundation pit excavation and structural construction of new engineering on existing underlying tunnel[J]. Rock and Soil Mechanics, 2015, 36(11): 3201-3209. (in Chinese))
    [8]
    孙克国, 仇文革, 王中平, 等. 高速公路改扩建工程对高铁隧道的近接施工影响[J]. 山东大学学报(工学版), 2015, 45(5): 70-76.
    (SUN Ke-guo, QIU Wen-ge, WANG Zhong-ping, et al.Study on approaching excavation influence between expanding projects of expressway and high speed railway tunnel under operation state[J]. Journal of Shandong University (Engineering Science), 2015, 45(5): 70-76. (in Chinese))
    [9]
    姚捷. 新建公路施工对赣龙铁路隧道的影响分析[J]. 铁道工程学报, 2013, 30(2): 81-85.
    (YAO Jie.Analysis of influence of new highway construction on tunnel of ganzhou-longyan railway[J]. Journal of Railway Engineering Society, 2013, 30(2): 81-85. (in Chinese))
    [10]
    温锁林. 近距离上穿运营地铁隧道的基坑明挖施工控制技术[J]. 岩土工程学报, 2010, 32(增刊2): 451-454.
    (WEN Suo-lin.Construction technology of deep open excavation above running metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 451-454. (in Chinese))
    [11]
    胡海英, 张玉成, 杨光华, 等. 基坑开挖对既有地铁隧道影响的实测及数值分析[J]. 岩土工程学报, 2014, 36(增刊2): 431-439.
    (HU Hai-ying, ZHANG Yu-cheng, YANG Guang-hua, et al.Measurement and numerical analysis of effect of excavation of foundation pits on metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 431-439. (in Chinese))
    [12]
    TAYLOR R N.Geotechnical centrifuge technology[M]. London: Blackie Academic & Professional, 1995.
    [13]
    李鹏飞, 赵勇, 张顶立, 等. 基于现场实测数据统计的隧道围岩压力分布规律研究[J]. 岩石力学与工程学报, 2013, 32(7): 1392-1399.
    (LI Peng-fei, ZHAO Yong, ZHANG Ding-li, et al.Study of distribution laws of tunnel surrounding rock pressure based on field measured data statistics[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1392-1399. (in Chinese))
    [14]
    TB10003—2005 铁路隧道设计规范[S]. 2005.
    (TB10003—2005 Code for design on tunnel of railway[S]. 2005. (in Chinese))
    [15]
    张顶立. 隧道及地下工程的基本问题及其研究进展[J]. 力学学报, 2017, 49(1): 3-21.
    (ZHANG Ding-li.Essential issues and their research progress in tunnel and underground engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 3-21. (in Chinese))
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views (269) PDF downloads (144) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return