• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

横观各向同性岩石弹塑性本构模型与参数求解方法研究

王者超, 宗智, 乔丽苹, 李术才, 李崴

王者超, 宗智, 乔丽苹, 李术才, 李崴. 横观各向同性岩石弹塑性本构模型与参数求解方法研究[J]. 岩土工程学报, 2018, 40(8): 1457-1465. DOI: 10.11779/CJGE201808011
引用本文: 王者超, 宗智, 乔丽苹, 李术才, 李崴. 横观各向同性岩石弹塑性本构模型与参数求解方法研究[J]. 岩土工程学报, 2018, 40(8): 1457-1465. DOI: 10.11779/CJGE201808011
WANG Zhe-chao, ZONG Zhi, QIAO Li-ping, LI Shu-cai, LI Wei. Elastoplastic constitutive model and parameter determination for transversely isotropic rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1457-1465. DOI: 10.11779/CJGE201808011
Citation: WANG Zhe-chao, ZONG Zhi, QIAO Li-ping, LI Shu-cai, LI Wei. Elastoplastic constitutive model and parameter determination for transversely isotropic rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1457-1465. DOI: 10.11779/CJGE201808011

横观各向同性岩石弹塑性本构模型与参数求解方法研究  English Version

基金项目: 国家自然科学基金项目(51779045,51579141,51511140290); 高等学校创新引智计划项目(B17009)
详细信息
    作者简介:

    王者超(1980- ),男,山东高唐人,博士,教授,博士生导师,主要从事岩土材料流变与渗流特性的研究工作。E-mail: wang_zhechao@hotmail.com。

Elastoplastic constitutive model and parameter determination for transversely isotropic rocks

  • 摘要: 地层中普遍存在层理状岩石,这些岩石细观结构具有显著的方向性,从而引起了其变形与强度具有横观各向同性。采用弹性力学与广义塑性力学基本理论,建立了岩石横观各向同性弹塑性本构模型:弹性部分采用广义胡克定律描述,塑性部分采用基于广义八面体剪应力的屈服准则和势函数、非关联流动法则和应变硬化准则描述。该模型屈服面为外凸的非等截距椭圆截面角锥体,在各向同性条件下可退化为米塞斯屈服准则。提出了模型参数求解方法:弹性参数采用三轴压缩和扭转试验联合求解;塑性参数采用不同层理方向试样的三轴压缩试验求解。以炭质板岩为例,验证了所提出的横观各向同性弹塑性模型和参数求解方法,验证结果表明所提模型较好地反映了岩石的横观各向同性,参数求解方法简单有效。此外,还根据试验数据分析了炭质板岩塑性势方向性和弹塑性参数耦合特征。研究成果将为丰富岩石力学基本理论和解决相关工程问题提供理论基础。
    Abstract: Layered rocks are widely distributed in formations. The macro-structure of the layered rocks is characterized with transversely isotropy, which will induce the transverse isotropy in deformation and strength. Based on the basic theory of elasticity and generalized plastic mechanics, an elastoplastic constitutive model for transversely isotropic rock is proposed. In the model, the generalized Hooke's law is adopted for the elastic behavior. For the plastic behavior, the yield criterion and potential function formulated as a function of the generalized octahedral shear stress, the non-associated flow rule and the stress-dependent hardening criterion are used. The yield surface of the model is convex with non-equal intercept elliptical cross-section pyramid, which can be simplified under isotropic condition as that for the Mises yield criterion. A method for determination of the model parameters is proposed, that is, the elastic parameters are obtained by combining the triaxial compression tests with a torsion test. The plastic parameters are obtained by using the triaxial compression tests on samples with different bedding directions. Taking the carbonaceous slate as an example, the proposed transversely isotropic elastic-plastic model and the parameter determination method are verified. The results show that the proposed model can reflect the transversal isotropy of the rock well, and the parameter determination method is simple and effective. The direction of plastic potential and the coupling between elastic and plastic behaviors of carbonaceous slate are also discussed according to the test data. This research provides a theoretical basis for enriching the basic theory of rock mechanics and solving engineering problems.
  • [1] BARTON N, QUADROS E.Anisotropy is everywhere, to see, to measure, and to model[J]. Rock Mech Rock Eng, 2015, 48(4): 1323-1339.
    [2] AMADEI B.Importance of anisotropy when estimating and measuring in situ stresses in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(3): 293-325.
    [3] 秦二涛. 深埋层状岩体地下硐室稳定性及支护技术研究[D].长沙: 中南大学, 2012.
    (QIN Er-tao.Study on stability of underground caverns and support technology in deep layered rock mass[D]. Changsha: Central South University, 2012. (in Chinese))
    [4] 刘运思, 傅鹤林, 伍毅敏, 等. 横观各向同性岩石弹性参数及抗压强度的试验研究[J]. 中南大学学报(自然科学版), 2013, 8: 3398-3404.
    (LIU Yun-si, FU He-lin, WU Yi-min, et al.Experimental study of elastic parameters and compressive strength for transversely isotropic rocks[J]. Journal of Central South University, 2013, 8: 3398-3404. (in Chinese))
    [5] 段靓靓, 梁锴, 方理刚. 岩石横观各向同性参数试验研究[J]. 土工基础, 2008(3): 80-82, 85.
    (DUAN Liang-liang, LIANG Kai, FANG Li-gang.Test research for transverse isotropy parameter of rock[J]. Soil Engineering and Foundation, 2008(3): 80-82, 85. (in Chinese))
    [6] CHOU Y C, CHEN C S.Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure[J]. Int J Numer Anal Meth Geomech, 2008, 32(3): 219-234.
    [7] TALESNICK M L, LEE M Y, HAIMSON B C.On the determination of elastic material parameters of transverse isotropic rocks from a single test specimen[J]. Rock Mech Rock Eng, 1995, 28(1): 17-35.
    [8] 卢应发, 杨丽平, 陈高峰, 等. 层状地质材料弹性张量求解及应用[J]. 岩石力学与工程学报, 2008, 27(5): 922-930.
    (LU Ying-fa, YANG Li-ping, CHEN Gao-feng, et al.Research on elastic tensor resolution in stratified geomaterial and tis application[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 922-930. (in Chinese))
    [9] BOBET A.Lined circular tunnels in elastic transversely anisotropic rock at depth[J]. Rock Mech Rock Eng, 2011, 44(2): 149-167.
    [10] HEFNY A M, LO K Y.Analytical solutions for stresses and displacements around tunnels driven in cross-anisotropic rocks[J]. Int J Numer Anal Meth Geomech, 1999, 23(2): 161-177.
    [11] VU T M, SULEM J, SUBRIN D, et al.Semi-analytical solution for stresses and displacements in a tunnel excavated in transversely isotropic formation with non-linear behavior[J]. Rock Mech Rock Eng, 2013, 46(2): 213-229.
    [12] 张志增, 李仲奎. 横观各向同性岩体中圆形巷道反分析的惟一性[J]. 岩土力学, 2011, 32(7): 2066-2072.
    (ZHANG Zhi-zeng, LI Zhong-kui.Uniqueness of displacement back analysis of a circular tunnel in transversely isotropic rock mass[J]. Rock and Soil Mechanics, 2011, 32(7): 2066-2072. (in Chinese))
    [13] 王永刚, 丁文其, 贾善坡, 等. 考虑结构面特性的层状岩体各向异性模型[J]. 公路交通科技, 2014(10): 85-92.
    (WANG Yong-gang, DING Wen-qi, JIA Shan-po, et al.Anisotropic model of layered rock mass considering characteristics of structural interface[J]. Journal of Highway and Transportation Research and Development, 2014(10): 85-92. (in Chinese))
    [14] LONG N M A N, KHALDJIGITOV A A, ADAMBAEV U. On the constitutive relations for isotropic and transversely isotropic materials[J]. Applied Mathematical Modelling, 2013, 37: 7726-7740.
    [15] 徐磊, 任青文, 杜小凯, 等. 层状岩体各向异性弹塑性模型及其数值实现[J]. 地下空间与工程学报, 2010(4): 763-769.
    (XU Lei, REN Qing-wen, DU Xiao-kai, et al.An anisotropic elastoplastic constitutive model for layered rock masses and its implementation[J]. Chinese Journal of Underground Space and Engineering, 2010(4): 763-769. (in Chinese))
    [16] HILL R.The mathematical theory of plasticity[M]. Oxford: Clarendon Press, 1950.
    [17] 郑颖人, 孔亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010.
    (ZHENG Yin-ren, KONG Liang.Geotechnical plastic mechanics[M]. Beijing: China Architecture and Building Press, 2010. (in Chinese))
    [18] 王者超, 乔丽苹, 李术才, 等. 土的内变量蠕变模型研究[J]. 岩土工程学报2011, 33(10): 1569-1575.
    (WANG Zhe-chao, QIAO Li-ping, LI Shu-cai, et al.An internal-variable creep model for soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1569-1575. (in Chinese))
  • 期刊类型引用(8)

    1. 胡涛涛,周红飞,康志斌. 炭质板岩横观各向同性强度准则及参数辨识方法. 公路交通科技. 2024(09): 190-197 . 百度学术
    2. 王平,任艺,陈国兴,郑先伟,冯俊. 非均匀充填采场上隔离矿柱安全回采关键参数研究. 金属矿山. 2024(10): 13-23 . 百度学术
    3. 王平,陈国兴,程爱平,李吉民,黄春源,杜澳宇. 不同类型充填体上巷道底板应力解析计算模型研究. 矿业研究与开发. 2024(12): 83-93 . 百度学术
    4. 陈一凡,朱民耀,朱晓强,宋海洋,陆小锋. 基于广义胡克定律的弹性绳索拉伸研究. 计算机技术与发展. 2022(06): 138-144 . 百度学术
    5. 陈张华,朱其志,吕超洋,胡光平,苏超. 蟠龙抽水蓄能电站硐室围岩三轴试验及本构模型. 河海大学学报(自然科学版). 2022(05): 105-110 . 百度学术
    6. 刘武,陆倩,过申磊,郑连阁,袁文俊. 基于层状岩体宏细观结构的水力耦合数值模型研究. 岩石力学与工程学报. 2021(S1): 2851-2860 . 百度学术
    7. 杨仁树,朱晔,李永亮,李炜煜,肖博. 采动影响巷道弱胶结层状底板稳定性分析与控制对策. 煤炭学报. 2020(07): 2667-2680 . 百度学术
    8. 范磊,王卫军,袁超,袁越,郭亚超,杜少华. 基于Mohr-Coulomb与Drucker-Prager强度准则的巷道围岩数值模拟对比分析. 矿业研究与开发. 2019(12): 28-34 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  313
  • HTML全文浏览量:  9
  • PDF下载量:  208
  • 被引次数: 29
出版历程
  • 收稿日期:  2017-07-16
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回