• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhe-chao, ZONG Zhi, QIAO Li-ping, LI Shu-cai, LI Wei. Elastoplastic constitutive model and parameter determination for transversely isotropic rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1457-1465. DOI: 10.11779/CJGE201808011
Citation: WANG Zhe-chao, ZONG Zhi, QIAO Li-ping, LI Shu-cai, LI Wei. Elastoplastic constitutive model and parameter determination for transversely isotropic rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1457-1465. DOI: 10.11779/CJGE201808011

Elastoplastic constitutive model and parameter determination for transversely isotropic rocks

More Information
  • Received Date: July 16, 2017
  • Published Date: August 24, 2018
  • Layered rocks are widely distributed in formations. The macro-structure of the layered rocks is characterized with transversely isotropy, which will induce the transverse isotropy in deformation and strength. Based on the basic theory of elasticity and generalized plastic mechanics, an elastoplastic constitutive model for transversely isotropic rock is proposed. In the model, the generalized Hooke's law is adopted for the elastic behavior. For the plastic behavior, the yield criterion and potential function formulated as a function of the generalized octahedral shear stress, the non-associated flow rule and the stress-dependent hardening criterion are used. The yield surface of the model is convex with non-equal intercept elliptical cross-section pyramid, which can be simplified under isotropic condition as that for the Mises yield criterion. A method for determination of the model parameters is proposed, that is, the elastic parameters are obtained by combining the triaxial compression tests with a torsion test. The plastic parameters are obtained by using the triaxial compression tests on samples with different bedding directions. Taking the carbonaceous slate as an example, the proposed transversely isotropic elastic-plastic model and the parameter determination method are verified. The results show that the proposed model can reflect the transversal isotropy of the rock well, and the parameter determination method is simple and effective. The direction of plastic potential and the coupling between elastic and plastic behaviors of carbonaceous slate are also discussed according to the test data. This research provides a theoretical basis for enriching the basic theory of rock mechanics and solving engineering problems.
  • [1]
    BARTON N, QUADROS E.Anisotropy is everywhere, to see, to measure, and to model[J]. Rock Mech Rock Eng, 2015, 48(4): 1323-1339.
    [2]
    AMADEI B.Importance of anisotropy when estimating and measuring in situ stresses in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(3): 293-325.
    [3]
    秦二涛. 深埋层状岩体地下硐室稳定性及支护技术研究[D].长沙: 中南大学, 2012.
    (QIN Er-tao.Study on stability of underground caverns and support technology in deep layered rock mass[D]. Changsha: Central South University, 2012. (in Chinese))
    [4]
    刘运思, 傅鹤林, 伍毅敏, 等. 横观各向同性岩石弹性参数及抗压强度的试验研究[J]. 中南大学学报(自然科学版), 2013, 8: 3398-3404.
    (LIU Yun-si, FU He-lin, WU Yi-min, et al.Experimental study of elastic parameters and compressive strength for transversely isotropic rocks[J]. Journal of Central South University, 2013, 8: 3398-3404. (in Chinese))
    [5]
    段靓靓, 梁锴, 方理刚. 岩石横观各向同性参数试验研究[J]. 土工基础, 2008(3): 80-82, 85.
    (DUAN Liang-liang, LIANG Kai, FANG Li-gang.Test research for transverse isotropy parameter of rock[J]. Soil Engineering and Foundation, 2008(3): 80-82, 85. (in Chinese))
    [6]
    CHOU Y C, CHEN C S.Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure[J]. Int J Numer Anal Meth Geomech, 2008, 32(3): 219-234.
    [7]
    TALESNICK M L, LEE M Y, HAIMSON B C.On the determination of elastic material parameters of transverse isotropic rocks from a single test specimen[J]. Rock Mech Rock Eng, 1995, 28(1): 17-35.
    [8]
    卢应发, 杨丽平, 陈高峰, 等. 层状地质材料弹性张量求解及应用[J]. 岩石力学与工程学报, 2008, 27(5): 922-930.
    (LU Ying-fa, YANG Li-ping, CHEN Gao-feng, et al.Research on elastic tensor resolution in stratified geomaterial and tis application[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 922-930. (in Chinese))
    [9]
    BOBET A.Lined circular tunnels in elastic transversely anisotropic rock at depth[J]. Rock Mech Rock Eng, 2011, 44(2): 149-167.
    [10]
    HEFNY A M, LO K Y.Analytical solutions for stresses and displacements around tunnels driven in cross-anisotropic rocks[J]. Int J Numer Anal Meth Geomech, 1999, 23(2): 161-177.
    [11]
    VU T M, SULEM J, SUBRIN D, et al.Semi-analytical solution for stresses and displacements in a tunnel excavated in transversely isotropic formation with non-linear behavior[J]. Rock Mech Rock Eng, 2013, 46(2): 213-229.
    [12]
    张志增, 李仲奎. 横观各向同性岩体中圆形巷道反分析的惟一性[J]. 岩土力学, 2011, 32(7): 2066-2072.
    (ZHANG Zhi-zeng, LI Zhong-kui.Uniqueness of displacement back analysis of a circular tunnel in transversely isotropic rock mass[J]. Rock and Soil Mechanics, 2011, 32(7): 2066-2072. (in Chinese))
    [13]
    王永刚, 丁文其, 贾善坡, 等. 考虑结构面特性的层状岩体各向异性模型[J]. 公路交通科技, 2014(10): 85-92.
    (WANG Yong-gang, DING Wen-qi, JIA Shan-po, et al.Anisotropic model of layered rock mass considering characteristics of structural interface[J]. Journal of Highway and Transportation Research and Development, 2014(10): 85-92. (in Chinese))
    [14]
    LONG N M A N, KHALDJIGITOV A A, ADAMBAEV U. On the constitutive relations for isotropic and transversely isotropic materials[J]. Applied Mathematical Modelling, 2013, 37: 7726-7740.
    [15]
    徐磊, 任青文, 杜小凯, 等. 层状岩体各向异性弹塑性模型及其数值实现[J]. 地下空间与工程学报, 2010(4): 763-769.
    (XU Lei, REN Qing-wen, DU Xiao-kai, et al.An anisotropic elastoplastic constitutive model for layered rock masses and its implementation[J]. Chinese Journal of Underground Space and Engineering, 2010(4): 763-769. (in Chinese))
    [16]
    HILL R.The mathematical theory of plasticity[M]. Oxford: Clarendon Press, 1950.
    [17]
    郑颖人, 孔亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010.
    (ZHENG Yin-ren, KONG Liang.Geotechnical plastic mechanics[M]. Beijing: China Architecture and Building Press, 2010. (in Chinese))
    [18]
    王者超, 乔丽苹, 李术才, 等. 土的内变量蠕变模型研究[J]. 岩土工程学报2011, 33(10): 1569-1575.
    (WANG Zhe-chao, QIAO Li-ping, LI Shu-cai, et al.An internal-variable creep model for soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1569-1575. (in Chinese))
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views (313) PDF downloads (208) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return