• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑土体-结构相互作用的数值极限分析上限法

贾苍琴, 黄齐武, 王贵和

贾苍琴, 黄齐武, 王贵和. 考虑土体-结构相互作用的数值极限分析上限法[J]. 岩土工程学报, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003
引用本文: 贾苍琴, 黄齐武, 王贵和. 考虑土体-结构相互作用的数值极限分析上限法[J]. 岩土工程学报, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003
JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003
Citation: JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003

考虑土体-结构相互作用的数值极限分析上限法  English Version

基金项目: 国家自然科学基金项目(40902085,41202219); 中央高校基本科研业务费专项资金项目(2652013104)
详细信息
    作者简介:

    贾苍琴(1976-),女,讲师,主要从事岩土力学数值分析等方面的教学和科研。E-mail:jiacangqin@cugb.edu.cn。

    通讯作者:

    黄齐武,E-mail:richardhuangqw@163.com

Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction

  • 摘要: 非连续面拓扑优化技术(discontinuity topology optimization,DTO)是考虑涉及土体-结构相互作用的岩土稳定性问题的极限分析数值上限法。稳定性问题的几何范围采用规则的栅格点阵进行离散,且点阵之间潜在连接线即滑移线或非连续面构造形成允许速度场或破坏模式。诸如土钉、支撑挡墙等结构体与土体建模时同时考虑,不用区别对待,而且非连续面可以穿过结构体是本文DTO技术的独特之处。DTO技术可以涵盖平动和指定边界区域结构体的转动。最终优化问题呈线性特征,并借助线性优化问题的内点法进行求解。刚性块体平动和转动以及刚塑性结构的塑性铰屈服破坏模式均可模拟。以拱桥结构、锚定板桩墙以及内支撑挡墙基坑稳定性问题为例证,检验程序的有效性。DTO的计算结果以图示的形式清晰且细致地表述了非连续面布局构造的临界破坏模式。
    Abstract: The discontinuity topology optimization (DTO) is an upper bound limit analysis technique for modeling the stability of geotechnical problems involving soil-structure interaction. The slip-lines or discontinuities used for DTO are typically generated by interconnecting a set of nodes located at regular grid points within a domain under consideration. A key feature of this implementation is that the soil reinforcement is simulated by the soil model such that allows the soil to flow past the reinforcement as might occur for soil nailing and propped wall. And also the procedure is extended to enable rotations at the boundaries of prescribed regions to be considered as well as translation failure mechanisms to be modelled. The resulting procedure is solved by the interior point method with linear programming formulation, which allows identification of a wide variety of failure modes, including translation and /or rigid body rotation, and rigid-plastic bending of the structure due to the formation of plastic hinge. The effectiveness of this procedure is demonstrated by analyzing the stability of masonry arch bridge, anchored sheet pile wall and propped wall. The DTO output is provided, which clearly illustrates the clarity and detail of the discontinuity collapse mechanism solutions.
  • [1] SLOAN S W.Lower bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Engineering, 1988, 12: 61-77.
    [2] UKRITCHON B, WHITLE A J, SLOAN S W.Undrained limit analyses for combined loading of strip footings on clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(3): 265-276.
    [3] UKRITCHON B, WHITTLE A J, KLANGVIJIT C.Calculations of bearing capacity factor nγ using numerical limit analyses[J]. Journal of Geotechnical and Geo- environmental Engineering, ASCE, 2003, 129(6): 468-474.
    [4] BORGES L A, ZOUAIN N, COSTA C, et al.An adaptive approach to limit analysis[J]. International Journal of Solids and Structures, 2001, 38: 1707-1720.
    [5] CHRISTIANSEN E, PEDERSEN O S.Automatic mesh refinement in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2001, 50(6): 1331-1346.
    [6] LYAMIN A V, SLOAN S W.Mesh generation for lower bound limit analysis[J]. Advances in Engineering Software, 2003, 34(6): 321-338.
    [7] LYAMIN A V, SLOAN S W, KRABBENHOFT K, HJIAJ M.Lower bound limit analysis with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1961-1974.
    [8] YUAN Y, WHITTLE A J.Evaluation and prediction of 17th Street Canal I-wall stability using numerical limit analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 139(6): 841-852.
    [9] MUÑOZ J J, LYAMIN A V, HUERTA A. Stability of anchored sheet wall in cohesive-frictional soils by FE limit analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(13): 1213-1230.
    [10] 黄齐武. 基于锥形规划理论的数值极限分析下限法及其应用[D]. 上海: 同济大学, 2007.
    (HUANG QI-WU.Numerical lower bound limit analysis using second-order cone programming and its applications[D]. Shanghai: Tongji University, 2007. (in Chinese))
    [11] MAKRODIMOPOULOS A, MARTIN C M.Upper bound limit analysis using discontinuous quadratic displacement fields[J]. Communications in Numerical Methods in Engineering, 2008, 24: 911-927.
    [12] MILANI G, LOURENÇO P B. A discontinuous quasi-upper bound limit analysis approach with sequential linear programming mesh adaptation[J]. International Journal of Mechanical Sciences, 2009, 51: 89-104.
    [13] HAMBLETON J P, SLOAN S W.A perturbation method for optimization of rigid block mechanisms in the kinematic method of limit analysis[J]. Computers and Geotechnics, 2013, 48: 260-271.
    [14] LE C V.Novel numerical procedures for limit analysis of structures: mesh-free methods and mathematical programming [D]. Sheffield: University of Sheffield, UK, 2010.
    [15] ZHOU S T, LIU Y H, CHEN S S.Upper bound limit analysis of plates utilizing the C1 natural element method[J]. Computational Mechanics, 2012, 50(5): 543-561.
    [16] SMITH C, GILBERT M.Application of discontinuity layout optimization to plane plasticity problems[J]. Proceedings the Royal of Society A: Mathematical, Physical and Engineering Sciences, 2007, 463: 2461-2484.
    [17] JIA CANG-QIN, HUANG QI-WU, XIA BAI-RU. Stability analysis of soil slope using discontinuity layout optimization[J]. Advanced Materials Research, 2015, 1065-1069: 190-198.
    [18] KARMARKER N.A new polynominal-time algorithm for linear programming[J]. Combinatorica, 1984, 4: 373-395.
    [19] GILL P E, MURRAY W, SAUNDERS M A, et al.On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method[J]. Mathematical Programming, 1986, 36: 183-209.
    [20] PLUMEY S.Soil-structure interaction in cut-and-cover tunnels[D]. Switzerland: EPFL, 2007.
    [21] NGUYEN D.Application of computational limit analysis to soil-structure interaction in masonry arch bridges[D]. Sheffield: University of Sheffield, 2008.
    [22] KRABBENHOFT K, DAMKILDE L, KRABBENHOFT S.Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming[J]. Computers and Structures, 2005, 83: 383-393.
  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  348
  • HTML全文浏览量:  3
  • PDF下载量:  363
  • 被引次数: 2
出版历程
  • 收稿日期:  2016-11-14
  • 发布日期:  2018-03-24

目录

    /

    返回文章
    返回