• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同含水饱和度低渗透岩石气体滑脱效应研究

巢志明, 王环玲, 徐卫亚, 贾朝军, 方应东

巢志明, 王环玲, 徐卫亚, 贾朝军, 方应东. 不同含水饱和度低渗透岩石气体滑脱效应研究[J]. 岩土工程学报, 2017, 39(12): 2287-2295. DOI: 10.11779/CJGE201712018
引用本文: 巢志明, 王环玲, 徐卫亚, 贾朝军, 方应东. 不同含水饱和度低渗透岩石气体滑脱效应研究[J]. 岩土工程学报, 2017, 39(12): 2287-2295. DOI: 10.11779/CJGE201712018
CHAO Zhi-ming, WANG Huan-ling, XU Wei-ya, JIA Chao-jun, FANG Ying-dong. Gas Klinkenberg effect of low-permeability rocks with different degrees of water saturation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2287-2295. DOI: 10.11779/CJGE201712018
Citation: CHAO Zhi-ming, WANG Huan-ling, XU Wei-ya, JIA Chao-jun, FANG Ying-dong. Gas Klinkenberg effect of low-permeability rocks with different degrees of water saturation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2287-2295. DOI: 10.11779/CJGE201712018

不同含水饱和度低渗透岩石气体滑脱效应研究  English Version

基金项目: 国家自然科学基金项目(11172090,11272113,51479049,11572110,51209075),中央高校基本业务费基金项目(2016B05314)
详细信息
    作者简介:

    巢志明(1991- ),男,硕士研究生,主要从事岩石力学与岩石渗流力学方面的科研。E-mail:chaozhiming@qq.com。

  • 中图分类号: TU452

Gas Klinkenberg effect of low-permeability rocks with different degrees of water saturation

  • 摘要: 低渗透岩石气体滑脱效应的研究是油气开采与存储领域十分重要的内容,但目前关于低渗透岩石气体滑脱效应的研究大多是在气体单相流下进行的,对于气-液两相流时,液体对气体滑脱效应的影响,所做的研究不足。因此,利用研发的低渗透岩石惰性气体渗透性测试系统,对含水饱和度为0~70%的低渗透砂岩,进行了不同含水饱和度的低渗透岩石气体滑脱效应及有效渗透率变化规律的研究,试验结果表明:①二次公式kg=k(1+b/q-a/p2)可以较为准确的解释低渗透岩石的气体滑脱效应,准确性明显高于Klinkenberg公式。②含水饱和度对低渗透岩石的气体滑脱效应有明显影响,气体滑脱效应随着含水饱和度增大而减少,在含水饱和度超过50 %时,气体滑脱效应几乎完全被限制。③由于水的作用,含水的低渗透岩石随着围压增大,气体滑脱效应减少,这与克氏理论的结论相反。④含水饱和度对低渗透岩石的有效渗透率影响显著,随含水饱和度的增大有效渗透率减少,且围压越大,低渗透岩石的有效渗透率对含水饱和度变化越敏感。⑤低渗透岩石的有效渗透率与含水饱和度符合幂函数关系,即k=k0(1-Sw)c
    Abstract: The research on gas Klinkenberg effect of low-permeability rock is an important issue in the field of underground oil and gas storage, but the current one on gas Klinkenberg effect is most conducted under single-phase flow of gas, lacking in the research on the action of fluid on gas Klinkenberg effect under two-phase flow (gas-liquid) condition. Therefore, using the low-permeability rock permeability test system, the change laws of gas Klinkenberg effect and the effective permeability of low-permeability rocks with water saturations ranging from 0% to 70% are studied. The experimental results show that: (1) The quadratic formula kg=k(1+b/q-a/p2) can accurately interpret the gas Klinkenberg effect of low-permeability rocks, and its accuracy is significantly higher than that of the Klinkenberg equation. (2) The water saturation of low-permeability rocks has significant effects on the Klinkenberg effect. The gas Klinkenberg effect decreases as the water saturation increases, and the gas Klinkenberg effect is completely limited when the water saturation is more than 50%. (3) Owing to the effect of water, the gas Klinkenberg effect of water-filled low-permeability rocks declines with the increase of confining pressure, and it is opposite to the Klinkenberg's theory. (4) The water saturation has significant effects on the effective permeability of low-permeability rocks. The effective permeability decreases along with the increase of water saturation, and the sensitive degree of the effective permeability of low-permeability rocks to water saturation decreases with the increase of confining pressure. (5) The relationship between the effective permeability and the water saturation agrees with the power function relationship, namely, k=k0(1-Sw)c.
  • [1] WANG H L, XU W Y, ZUO J, et al. Compact rock material gas permeability properties[J]. Physica, 2014, 4(49): 10-18.
    [2] 吕志凯, 何东博, 甯 波. 低渗砂岩克氏渗透率影响因素试验研究[J]. 科学技术与工程, 2015(5): 91-95. (LÜ Zhi-kai, HE Dong-bo, NING Bo. Experimental study on factors of klinkenberg permeability in low permeable sandstone[J]. Science Technology and Engineering, 2015(5): 91-95. (in Chinese))
    [3] 吴家文, 贺凤云, 李树良, 等. 考虑压敏和滑脱效应的低渗透气藏渗流规律研究[J]. 钻采工艺, 2007, 30(6): 49-51. (WU Jia-wen, HE Feng-yun, LI Shu-liang, et al. Considering pressure sensitive and slippage effect of low permeability gas reservoir seepage law research[J]. Driling Production Technology, 2007, 30(6): 49-51. (in Chinese))
    [4] TANIKAWA W, SHIMAMOTO T. Correction to “comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks”[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1394-1395.
    [5] ZHU W C, LIU J, SHENG J C, et al. Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 971-980.
    [6] 肖晓春, 潘一山, 于丽艳. 水饱和度作用下低渗透气藏滑脱效应试验研究[J]. 水资源与水工程学报, 2010, 21(5): 15-19. (XIAO Xiao-chun, PAN Yi-shan, YU Li-yan. Experiment of slippage effect under water saturation in hypotonic coalbed[J]. Journal of Water Resources & Water Engineering, 2010, 21(5): 15-19. (in Chinese))
    [7] ROSE W D. Permeability and gas-slippage phenomena[C]// 28th Annual Mtg. Topical Committee on Production Technology. New York, 1948: 209.
    [8] ESTES R K, FULTON P F. Gas slippage and permeability measurements[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1956, 207(12): 338-342.
    [9] 游利军, 康毅力, 陈一健, 等. 含水饱和度和有效应力对致密砂岩有效渗透率的影响[J]. 天然气工业, 2004, 24(12): 105-107. (YOU Li-jun, KANG Yi-li, CHEN Yi-jian, et al. Influence of water saturation and effective stress on effective permeability of tight sandstone[J]. Natural Gas Industry, 2004, 24(12): 105-107.
    [10] 曾 平, 赵金洲, 李治平, 等. 温度、有效应力和含水饱和度对低渗透砂岩渗透率影响的试验研究[J]. 天然气地球科学, 2005, 16(1): 31-34. (ZENG Ping, ZHAO Jin-zhou, LI Zhi-ping, et al. Experimental study concerning the effect of temperature, effective stress and water saturation on the permeability of tight sandstone[J]. Natural Gas Geoscience, 2005, 16(1): 31-34. (in Chinese))
    [11] SHOJAEI M J, GHAZANFARI M H, MASIHI M. Relative permeability and capillary pressure curves for low salinity water flooding in sandstone rocks[J]. Journal of Natural Gas Science and Engineering, 2015, 25(0): 30-38.
    [12] ANSALONI L, NYKAZA J R, YE Y, et al. Influence of water vapor on the gas permeability of polymerized ionic liquids membranes[J]. Journal of Membrane Science, 2015, 487(0): 199-208.
    [13] 王环玲, 徐卫亚. 致密岩石渗透测试与渗流力学特性[M].北京: 科学出版社, 2014. (WANG Huan-ling, XU Wei-ya. The seepage characteristics and permeability test of low permeability rock[M]. Beijing: Science Press, 2014. (in Chinese))
    [14] KLINKENBERG L J. The permeability of porous media to liquids and gases[C]// Drilling and Production Practice. New York, 1941.
    [15] 张烈辉, 梁 斌, 刘启国, 等. 考虑滑脱效应的低渗低压气藏的气井产能方程 [J]. 天然气工业, 2009, 29(1): 76-78. (ZHANG Lie-hui, LIANG Bin, LIU Qi-guo, et al. Coal-bed methane percolation numerical simulation[J]. Natural Gas Industry, 2009, 29(1): 76-78. (in Chinese))
    [16] LI K, HORNE R N. An Experimental and analytical study of steam/water capillary pressure[J]. SPE Reservoir Evaluation & Engineering, 2001, 4(6): 477-482.
    [17] ERTEKIN T, KING G A, SCHWERER F C. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations[J]. SPE Formation Evaluation, 1986, 1(1): 43-52.
    [18] CHEN W, LIU J, BRUE F, et al. Water retention and gas relative permeability of two industrial concretes[J]. Cement and Concrete Research, 2012, 42(7): 1001-1013.
    [19] 赵红鹤, 杨小林, 高富强, 等. 不同含水率岩石试样制备方法探讨[J]. 洛阳理工学院学报 (自然科学版), 2014, 24(1): 4-7. (ZHAO Hong-he, YANG xiao-lin, GAO Fu-qiang, et al. Discussion on preparing methods of rock sample with different water contents[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2014, 24(1): 4-7. (in Chinese))
    [20] 周 辉, 李 震, 宋雨泽, 等. 精确制备不同含水率岩石试样的化学热力学方法[J]. 岩土力学, 2013, 34(2): 311-315. (ZHOU Hui, LI Zhen, SONG Yu-zhe, et al. Chemo-thermodynamical method for precisely preparing rock sample with different water contents[J]. Rock and Soil Mechanics, 2013, 34(2): 311-315. (in Chinese))
    [21] 刘代俊, 马克承, 石炎福. 盐饱和溶液气相的相对湿度[J]. 成都科技大学学报, 1991(4): 99-102. (LIU Dai-jun, MA Ke-cheng, SHI Yan-fu. Solvability and the number of same order classes of maximal subgroups[J]. Journal of Chendu University of Science and Technology, 1991(4): 90-102. (in Chinese))
    [22] 王环玲, 徐卫亚, 左 婧, 等. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 2015, 46(2): 1-10. (WANG Huan-lin, XU Wei-ya, ZUO Jing, et al. Evolution law research on the permeability and porosity of low-permeability rock based on gas permeability test[J]. Shuili Xuebao, 2015, 46(2): 1-10. (in Chinese))
    [23] 王 欣. 致密岩石渗透特性的气渗试验研究[D]. 南京: 河海大学, 2013. (WANG Xin. Dense rock permeability characteristics of air infiltration experiment research[D]. Nanjing: Hohai University, 2013. (in Chinese))
    [24] 左 婧. 低渗透岩石气体渗流特性及气渗滑脱效应的试验研究[D]. 南京: 河海大学, 2014. (ZUO Jing. Experimental research on gas permeability properties and klinkenberg effect of compact rock[D]. Nanjing: Hohai University, 2014. (in Chinese))
    [25] DONG M, LI Z, LI S, et al. Permeabilities of tight reservoir cores determined for gaseous and liquid CO 2 and C 2 H 6 using minimum backpressure method[J]. Journal of Natural Gas Science & Engineering, 2012, 5(3): 1-5.
    [26] LI Y, TANG D, XU H, et al. Experimental research on coal permeability: The roles of effective stress and gas slippage[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 481-488.
    [27] JONES F O, OWENS W W. A Laboratory study of low-permeability gas sands[J]. Journal of Petroleum Technology, 1980, 32(9): 31-40.
    [28] FATHI E, TINNI A, AKKUTLU I Y. Correction to Klinkenberg slip theory for gas flow in nano-capillaries[J]. International Journal of Coal Geology, 2012, 103(23): 51-59.
    [29] ASHRAFI MOGHADAM A, CHALATURNYK R. Expansion of the Klinkenberg's slippage equation to low permeability porous media[J]. International Journal of Coal Geology, 2014, 123(0): 2-9.
    [30] ZIARANI A S. Aguilera Roberto Knudsen’s permeability correction for tight porous media[J]. Transp Porous Med, 2012, 91: 239-260.
    [31] 王环玲, 徐卫亚, 巢志明, 等. 致密岩石气体渗流滑脱效应试验研究[J]. 岩土工程学报, 2016, 38(5): 777-785. (WANG Huan-lin, XU Wei-ya, CHAO Zhi-ming, et al. Experimental study on slippage effects of gas flow in compact rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 777-785. (in Chinese))
    [32] 朱华银, 周 娟, 万玉金, 等. 多孔介质中气水渗流的微观机理研究[J]. 石油试验地质, 2004, 26(6): 571-573. (ZHU Hua-yin, ZHOU Juan, WAN Yu-jin, et al. Microscopic mechanism study of gas-water flow in porous media[J]. Petroleum Geology Experiment, 2004, 26(6): 571-573. (in Chinese))
    [33] 付大其, 朱华银, 刘义成, 等. 低渗气层岩石孔隙中可动水试验 [J]. 大庆石油学院学报, 2008, 32(5): 23-26. (FU Da-qi, ZHU Hua-yin, LIU Yi-cheng, et al. Experimental study of the movable water in the rock pore of low permeability gas layer[J]. Journal of Daqing Petroleum Institute, 2008, 32(5): 23-26. (in Chinese))
    [34] 任晓娟. 低渗砂岩储层孔隙结构与流体微观渗流特征研究[D]. 西安: 西北大学, 2006. (REN Xiao-juan. Pore structure of low permeability sand rock and fluid flowing characteristics[D]. Xian: Northwest University, 2006. (in Chinese))
    [35] ZHANG Chun-hui, XU Xiao-pan, et al. Testing study on the effects of water content on permeability for coal[J]. Applied Mechanics & Materials, 2014: 580-583.
    [36] 马永平. 苏里格气田致密砂岩储层微观孔隙结构研究[D]. 西安: 西北大学, 2013. (MA Yong-ping. Study on micro-pore structure of tight sandstone gas reservoir in Sulige gas field[D]. Xi'an: Northwest University, 2013. (in Chinese))
  • 期刊类型引用(22)

    1. 谢朋,李葱葱,段虎辰,文海家,李良勇,李昭捷,王永卫. 隧道围岩透明相似材料强度特征与配合比研究. 湖南大学学报(自然科学版). 2025(01): 219-227 . 百度学术
    2. 钱伟丰,黄明,曾子圣,王禹,胡艳峰. 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报. 2025(01): 273-288 . 百度学术
    3. 应宏伟,吕忠泽. 考虑刀土摩擦的砂土盾构隧道开挖面支护压力计算方法. 中南大学学报(自然科学版). 2024(03): 1082-1091 . 百度学术
    4. 夏俊偉. 砂卵石地层中地铁盾构隧道开挖面稳定性离散元数值模拟研究. 铁道勘察. 2024(02): 140-146 . 百度学术
    5. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 . 百度学术
    6. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 . 百度学术
    7. 刘功明,黄建坤,杜金阳,张健. 适用于植物生长的透明土制备及其性能试验. 农业工程学报. 2024(15): 76-84 . 百度学术
    8. 何晟亚,李亮,李恒一,张建经,叶亮,文海家,段虎辰,谢朋. 可视化软土隧道模型试验相似材料的配置及其物理力学特性研究. 现代隧道技术. 2024(04): 202-209 . 百度学术
    9. 刘维正,师嘉文,谭际鸣,董军,豆小天. 水位变化下浅埋盾构隧道开挖面渗透力与稳定性研究. 中南大学学报(自然科学版). 2024(10): 3833-3848 . 百度学术
    10. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 . 百度学术
    11. 卜璟,王琛. 基于透明土试验技术的盾构侧穿桩基影响机制研究. 江苏建筑. 2023(02): 67-72 . 百度学术
    12. 雷华阳,刘敏,钟海晨,许英刚,袁大军. 黏土地层盾构隧道开挖面失稳离心试验及数值模拟. 天津大学学报(自然科学与工程技术版). 2023(05): 503-512 . 百度学术
    13. 苏占东,周思哲,王成虎,孙进忠,曾扬农,张建勇,张明磊,王磊,朱卓辉,李小瑞. 工程岩体物理模拟研究中实验材料的选择与应用. 地质论评. 2023(03): 1133-1149 . 百度学术
    14. 谢丽辉,丁军军. 上软下硬地层盾构隧道开挖面稳定性数值模拟研究. 城市道桥与防洪. 2023(05): 195-199+24-25 . 百度学术
    15. 李同海. 考虑断层边界影响的盾构掘进安全距离界定方法. 福建交通科技. 2023(04): 60-64 . 百度学术
    16. 汪联欢. 消力池开挖施工对临近泄洪洞安全性的影响. 水利科学与寒区工程. 2023(11): 133-137 . 百度学术
    17. 雷华阳,刘敏,程泽宇,钟海晨. 透明黏土盾构隧道开挖面失稳扩展过程和失稳特征研究. 岩石力学与工程学报. 2022(06): 1235-1245 . 百度学术
    18. 王均山,衣凡,连文博,张建铭,何志伟,谢育杨,仲志武,程雪松. 软土地区地铁盾构隧道引发地表沉陷实例研究. 建筑结构. 2022(S1): 2871-2877 . 百度学术
    19. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 . 百度学术
    20. 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述. 隧道与地下工程灾害防治. 2022(03): 31-46 . 百度学术
    21. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看
    22. 刘朝钦. 软弱地层超大矩形顶管盾构隧道开挖面稳定性研究. 高速铁路技术. 2022(06): 36-40 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 45
出版历程
  • 收稿日期:  2016-08-31
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回