• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHAO Zhi-ming, WANG Huan-ling, XU Wei-ya, JIA Chao-jun, FANG Ying-dong. Gas Klinkenberg effect of low-permeability rocks with different degrees of water saturation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2287-2295. DOI: 10.11779/CJGE201712018
Citation: CHAO Zhi-ming, WANG Huan-ling, XU Wei-ya, JIA Chao-jun, FANG Ying-dong. Gas Klinkenberg effect of low-permeability rocks with different degrees of water saturation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2287-2295. DOI: 10.11779/CJGE201712018

Gas Klinkenberg effect of low-permeability rocks with different degrees of water saturation

More Information
  • Received Date: August 31, 2016
  • Published Date: December 24, 2017
  • The research on gas Klinkenberg effect of low-permeability rock is an important issue in the field of underground oil and gas storage, but the current one on gas Klinkenberg effect is most conducted under single-phase flow of gas, lacking in the research on the action of fluid on gas Klinkenberg effect under two-phase flow (gas-liquid) condition. Therefore, using the low-permeability rock permeability test system, the change laws of gas Klinkenberg effect and the effective permeability of low-permeability rocks with water saturations ranging from 0% to 70% are studied. The experimental results show that: (1) The quadratic formula kg=k(1+b/q-a/p2) can accurately interpret the gas Klinkenberg effect of low-permeability rocks, and its accuracy is significantly higher than that of the Klinkenberg equation. (2) The water saturation of low-permeability rocks has significant effects on the Klinkenberg effect. The gas Klinkenberg effect decreases as the water saturation increases, and the gas Klinkenberg effect is completely limited when the water saturation is more than 50%. (3) Owing to the effect of water, the gas Klinkenberg effect of water-filled low-permeability rocks declines with the increase of confining pressure, and it is opposite to the Klinkenberg's theory. (4) The water saturation has significant effects on the effective permeability of low-permeability rocks. The effective permeability decreases along with the increase of water saturation, and the sensitive degree of the effective permeability of low-permeability rocks to water saturation decreases with the increase of confining pressure. (5) The relationship between the effective permeability and the water saturation agrees with the power function relationship, namely, k=k0(1-Sw)c.
  • [1]
    WANG H L, XU W Y, ZUO J, et al. Compact rock material gas permeability properties[J]. Physica, 2014, 4(49): 10-18.
    [2]
    吕志凯, 何东博, 甯 波. 低渗砂岩克氏渗透率影响因素试验研究[J]. 科学技术与工程, 2015(5): 91-95. (LÜ Zhi-kai, HE Dong-bo, NING Bo. Experimental study on factors of klinkenberg permeability in low permeable sandstone[J]. Science Technology and Engineering, 2015(5): 91-95. (in Chinese))
    [3]
    吴家文, 贺凤云, 李树良, 等. 考虑压敏和滑脱效应的低渗透气藏渗流规律研究[J]. 钻采工艺, 2007, 30(6): 49-51. (WU Jia-wen, HE Feng-yun, LI Shu-liang, et al. Considering pressure sensitive and slippage effect of low permeability gas reservoir seepage law research[J]. Driling Production Technology, 2007, 30(6): 49-51. (in Chinese))
    [4]
    TANIKAWA W, SHIMAMOTO T. Correction to “comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks”[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1394-1395.
    [5]
    ZHU W C, LIU J, SHENG J C, et al. Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 971-980.
    [6]
    肖晓春, 潘一山, 于丽艳. 水饱和度作用下低渗透气藏滑脱效应试验研究[J]. 水资源与水工程学报, 2010, 21(5): 15-19. (XIAO Xiao-chun, PAN Yi-shan, YU Li-yan. Experiment of slippage effect under water saturation in hypotonic coalbed[J]. Journal of Water Resources & Water Engineering, 2010, 21(5): 15-19. (in Chinese))
    [7]
    ROSE W D. Permeability and gas-slippage phenomena[C]// 28th Annual Mtg. Topical Committee on Production Technology. New York, 1948: 209.
    [8]
    ESTES R K, FULTON P F. Gas slippage and permeability measurements[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1956, 207(12): 338-342.
    [9]
    游利军, 康毅力, 陈一健, 等. 含水饱和度和有效应力对致密砂岩有效渗透率的影响[J]. 天然气工业, 2004, 24(12): 105-107. (YOU Li-jun, KANG Yi-li, CHEN Yi-jian, et al. Influence of water saturation and effective stress on effective permeability of tight sandstone[J]. Natural Gas Industry, 2004, 24(12): 105-107.
    [10]
    曾 平, 赵金洲, 李治平, 等. 温度、有效应力和含水饱和度对低渗透砂岩渗透率影响的试验研究[J]. 天然气地球科学, 2005, 16(1): 31-34. (ZENG Ping, ZHAO Jin-zhou, LI Zhi-ping, et al. Experimental study concerning the effect of temperature, effective stress and water saturation on the permeability of tight sandstone[J]. Natural Gas Geoscience, 2005, 16(1): 31-34. (in Chinese))
    [11]
    SHOJAEI M J, GHAZANFARI M H, MASIHI M. Relative permeability and capillary pressure curves for low salinity water flooding in sandstone rocks[J]. Journal of Natural Gas Science and Engineering, 2015, 25(0): 30-38.
    [12]
    ANSALONI L, NYKAZA J R, YE Y, et al. Influence of water vapor on the gas permeability of polymerized ionic liquids membranes[J]. Journal of Membrane Science, 2015, 487(0): 199-208.
    [13]
    王环玲, 徐卫亚. 致密岩石渗透测试与渗流力学特性[M].北京: 科学出版社, 2014. (WANG Huan-ling, XU Wei-ya. The seepage characteristics and permeability test of low permeability rock[M]. Beijing: Science Press, 2014. (in Chinese))
    [14]
    KLINKENBERG L J. The permeability of porous media to liquids and gases[C]// Drilling and Production Practice. New York, 1941.
    [15]
    张烈辉, 梁 斌, 刘启国, 等. 考虑滑脱效应的低渗低压气藏的气井产能方程 [J]. 天然气工业, 2009, 29(1): 76-78. (ZHANG Lie-hui, LIANG Bin, LIU Qi-guo, et al. Coal-bed methane percolation numerical simulation[J]. Natural Gas Industry, 2009, 29(1): 76-78. (in Chinese))
    [16]
    LI K, HORNE R N. An Experimental and analytical study of steam/water capillary pressure[J]. SPE Reservoir Evaluation & Engineering, 2001, 4(6): 477-482.
    [17]
    ERTEKIN T, KING G A, SCHWERER F C. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations[J]. SPE Formation Evaluation, 1986, 1(1): 43-52.
    [18]
    CHEN W, LIU J, BRUE F, et al. Water retention and gas relative permeability of two industrial concretes[J]. Cement and Concrete Research, 2012, 42(7): 1001-1013.
    [19]
    赵红鹤, 杨小林, 高富强, 等. 不同含水率岩石试样制备方法探讨[J]. 洛阳理工学院学报 (自然科学版), 2014, 24(1): 4-7. (ZHAO Hong-he, YANG xiao-lin, GAO Fu-qiang, et al. Discussion on preparing methods of rock sample with different water contents[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2014, 24(1): 4-7. (in Chinese))
    [20]
    周 辉, 李 震, 宋雨泽, 等. 精确制备不同含水率岩石试样的化学热力学方法[J]. 岩土力学, 2013, 34(2): 311-315. (ZHOU Hui, LI Zhen, SONG Yu-zhe, et al. Chemo-thermodynamical method for precisely preparing rock sample with different water contents[J]. Rock and Soil Mechanics, 2013, 34(2): 311-315. (in Chinese))
    [21]
    刘代俊, 马克承, 石炎福. 盐饱和溶液气相的相对湿度[J]. 成都科技大学学报, 1991(4): 99-102. (LIU Dai-jun, MA Ke-cheng, SHI Yan-fu. Solvability and the number of same order classes of maximal subgroups[J]. Journal of Chendu University of Science and Technology, 1991(4): 90-102. (in Chinese))
    [22]
    王环玲, 徐卫亚, 左 婧, 等. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 2015, 46(2): 1-10. (WANG Huan-lin, XU Wei-ya, ZUO Jing, et al. Evolution law research on the permeability and porosity of low-permeability rock based on gas permeability test[J]. Shuili Xuebao, 2015, 46(2): 1-10. (in Chinese))
    [23]
    王 欣. 致密岩石渗透特性的气渗试验研究[D]. 南京: 河海大学, 2013. (WANG Xin. Dense rock permeability characteristics of air infiltration experiment research[D]. Nanjing: Hohai University, 2013. (in Chinese))
    [24]
    左 婧. 低渗透岩石气体渗流特性及气渗滑脱效应的试验研究[D]. 南京: 河海大学, 2014. (ZUO Jing. Experimental research on gas permeability properties and klinkenberg effect of compact rock[D]. Nanjing: Hohai University, 2014. (in Chinese))
    [25]
    DONG M, LI Z, LI S, et al. Permeabilities of tight reservoir cores determined for gaseous and liquid CO 2 and C 2 H 6 using minimum backpressure method[J]. Journal of Natural Gas Science & Engineering, 2012, 5(3): 1-5.
    [26]
    LI Y, TANG D, XU H, et al. Experimental research on coal permeability: The roles of effective stress and gas slippage[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 481-488.
    [27]
    JONES F O, OWENS W W. A Laboratory study of low-permeability gas sands[J]. Journal of Petroleum Technology, 1980, 32(9): 31-40.
    [28]
    FATHI E, TINNI A, AKKUTLU I Y. Correction to Klinkenberg slip theory for gas flow in nano-capillaries[J]. International Journal of Coal Geology, 2012, 103(23): 51-59.
    [29]
    ASHRAFI MOGHADAM A, CHALATURNYK R. Expansion of the Klinkenberg's slippage equation to low permeability porous media[J]. International Journal of Coal Geology, 2014, 123(0): 2-9.
    [30]
    ZIARANI A S. Aguilera Roberto Knudsen’s permeability correction for tight porous media[J]. Transp Porous Med, 2012, 91: 239-260.
    [31]
    王环玲, 徐卫亚, 巢志明, 等. 致密岩石气体渗流滑脱效应试验研究[J]. 岩土工程学报, 2016, 38(5): 777-785. (WANG Huan-lin, XU Wei-ya, CHAO Zhi-ming, et al. Experimental study on slippage effects of gas flow in compact rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 777-785. (in Chinese))
    [32]
    朱华银, 周 娟, 万玉金, 等. 多孔介质中气水渗流的微观机理研究[J]. 石油试验地质, 2004, 26(6): 571-573. (ZHU Hua-yin, ZHOU Juan, WAN Yu-jin, et al. Microscopic mechanism study of gas-water flow in porous media[J]. Petroleum Geology Experiment, 2004, 26(6): 571-573. (in Chinese))
    [33]
    付大其, 朱华银, 刘义成, 等. 低渗气层岩石孔隙中可动水试验 [J]. 大庆石油学院学报, 2008, 32(5): 23-26. (FU Da-qi, ZHU Hua-yin, LIU Yi-cheng, et al. Experimental study of the movable water in the rock pore of low permeability gas layer[J]. Journal of Daqing Petroleum Institute, 2008, 32(5): 23-26. (in Chinese))
    [34]
    任晓娟. 低渗砂岩储层孔隙结构与流体微观渗流特征研究[D]. 西安: 西北大学, 2006. (REN Xiao-juan. Pore structure of low permeability sand rock and fluid flowing characteristics[D]. Xian: Northwest University, 2006. (in Chinese))
    [35]
    ZHANG Chun-hui, XU Xiao-pan, et al. Testing study on the effects of water content on permeability for coal[J]. Applied Mechanics & Materials, 2014: 580-583.
    [36]
    马永平. 苏里格气田致密砂岩储层微观孔隙结构研究[D]. 西安: 西北大学, 2013. (MA Yong-ping. Study on micro-pore structure of tight sandstone gas reservoir in Sulige gas field[D]. Xi'an: Northwest University, 2013. (in Chinese))
  • Related Articles

    [1]Analysis of ultimate bearing capacity of foundation based on variational limit equilibrium method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240146
    [2]LI Cheng-chao, GUAN Yun-fei, CAI Zheng-yin, JIANG Peng-ming, HAN Xun. Ultimate bearing capacity of strip footings placed near slopes determined by rigorous slip line field theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1408-1416. DOI: 10.11779/CJGE202108005
    [3]YIN Xin, ZHOU Hai-zuo, ZHENG Gang. Seismic bearing capacity of strip footings adjacent to slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 95-98. DOI: 10.11779/CJGE2017S2024
    [4]HUANG Mao-song, YU Sheng-bing. Pull-out capacity of strip anchor plate in sand based on block set mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 201-207.
    [5]PENG Ming-xiang. Slip-line solution to passive earth pressure on retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 460.
    [6]QIN Huilai, HUANG Maosong. Upper-bound method for calculating bearing capacity of strip footings on two-layer soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 611-616.
    [7]CHEN Wei, WANG Junxing. Plastic lower bound limit analysis using block element method for jointed rock slope[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 272-277.
    [8]HUANG Qiwu, JIA Cangqin. 3D analysis of ultimate bearing capacity by numerical limit analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1809-1814.
    [9]XU Gancheng, LI Chengxue, LIU Ping. Ultimate bearing capacity of shallow footing on anisotropic and nonhomogeneous clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 164-168.
    [10]WANG Hongyu, YANG Min. Lower-bound solution for bearing capacity of strip footings near excavations[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1044-1048.

Catalog

    Article views (353) PDF downloads (156) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return