• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地下连续墙对叠合墙式地铁车站结构地震反应的影响研究

王雪剑, 庄海洋, 陈国兴, 王瑞

王雪剑, 庄海洋, 陈国兴, 王瑞. 地下连续墙对叠合墙式地铁车站结构地震反应的影响研究[J]. 岩土工程学报, 2017, 39(8): 1435-1443. DOI: 10.11779/CJGE201708010
引用本文: 王雪剑, 庄海洋, 陈国兴, 王瑞. 地下连续墙对叠合墙式地铁车站结构地震反应的影响研究[J]. 岩土工程学报, 2017, 39(8): 1435-1443. DOI: 10.11779/CJGE201708010
WANG Xue-jian, ZHUANG Hai-yang, CHEN Guo-xing, WANG Rui. Effect of diaphragm wall on earthquake responses of an underground subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1435-1443. DOI: 10.11779/CJGE201708010
Citation: WANG Xue-jian, ZHUANG Hai-yang, CHEN Guo-xing, WANG Rui. Effect of diaphragm wall on earthquake responses of an underground subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1435-1443. DOI: 10.11779/CJGE201708010

地下连续墙对叠合墙式地铁车站结构地震反应的影响研究  English Version

基金项目: 国家自然科学基金面上项目(51278246),江苏省自然科学基金面上项目(BK20141458)
详细信息
    作者简介:

    王雪剑(1990- ),硕士研究生,主要从事地铁地下结构抗震研究。E-mail: xuejian_20072007@126.com。

    通讯作者:

    庄海洋,E-mail:zhuang7802@163.com

Effect of diaphragm wall on earthquake responses of an underground subway station

  • 摘要: 针对现行地铁地下车站结构的常见叠合墙式结构设计方法和抗震分析方法中不考虑地下连续墙存在的现实情况,基于数值计算方法,建立了土-地下连续墙-地下结构静动力耦合非线性相互作用有限元分析模型,分析了地下连续墙存在时对地铁地下车站主体结构地震反应的影响规律。研究结果表明:地下连续墙的存在对地铁车站主体结构的抗水平侧移能力有一定的提高作用,使得其顶底间的最大相对位移有显著减小。从这一结果出发,似乎可以认为地下结构抗震分析中不考虑地下连续墙时可看作是地下结构的地震安全储备。但是,地下连续墙的存在明显改变地下结构的整体变形性态,进而导致地下结构的内力发生重分布,尤其使得大震时车站结构的顶、中、底板一些关键部位的地震损伤程度明显比不考虑地下连续墙时要严重;同时,地下连续墙对车站结构顶底板表面与土体间的相对摩擦剪力也产生明显的影响。
    Abstract: At present, the diaphragm wall is always used as the partial side wall of the underground subway station. However, the diaphragm wall is always neglected in the seismic design of an underground structure for that it is looked as a reserved safety for its earthquake resistance. To verify this opinion, a finite-element model is established to simulate the static and dynamic coupling interaction among the soil, the diaphragm wall and the underground subway station. The effects of the diaphragm wall on the earthquake responses of the underground subway station are investigated and analyzed. As a result, the diaphragm wall can increase the lateral deformation stiffness of the underground structure, which reduces the relative lateral seismic deformation of the underground structure. From this point, the seismic design method for the underground structure is conservative. However, the diaphragm wall may also change the seismic deformation characteristics of the underground structure, which will aggravate the earthquake-induced tension damages of the plates of the underground structure under strong earthquakes. Moreover, the diaphragm wall may affect the friction responses on the interaction surfaces between the soils and the underground structure.
  • [1] IWATATE T, KOBAYASHI Y, KUSU H, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]// The 14th World Conference on Earthquake Engineering. Beijing, 2000: 1043.
    [2] HASHASH Y, HOOK J, SCHMIDT B, et al. Seismic design and analysis of underground structure[J]. Tunneling and Underground Space Technology, 2001, 16(4): 247-293.
    [3] ZHUANG H Y, CHENG S G, CHEN G X. Numerical emulation and analysis on the earthquake damages of Dakai subway station caused by the Kobe earthquake[J]. Chinese Journal of Rock and Soil Mechanics, 2008, 29(1): 245-250.
    [4] 川岛一彦. 地下结构の耐震设计[M]. 日本: 鹿岛出版社, 1994. (KWASHIMA K. Seismic design of underground structures[M]. Japan: Kashima Publishing Company, 1994. (in Japanese))
    [5] KAWASHIMA K. Seismic design of underground structures in soft ground, a review[C]// Proceedings of the International Symposium on Tunneling in Difficult Ground Conditions. Tokyo, 1999.
    [6] 杨林德, 王国波, 郑永来, 等. 地铁车站接头结构振动台模型实验及地震响应的三维数值模拟[J]. 岩土工程学报, 2007, 29(12): 1892-1898. (YANG Lin-de, WANG Guo-bo, ZHENG Yong-lai, et al. Shaking table tests on subway station joint structure and 3D numerical simulation of seismic response[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1892-1898. (in Chinese))
    [7] 刘晶波, 王文晖, 赵冬冬, 等. 复杂断面地下结构地震反应分析的整体式反应位移法[J]. 土木工程学报, 2014, 47(1): 134-142. (LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Integral response deformation method in seismic analysis of complex section underground structures[J]. China Civil Engineering Journal, 2014, 47(1): 134-142. (in Chinese))
    [8] 王 刚, 张建民, 魏 星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623-1627. (WANG Gang, ZHANG Jian-min, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623-1627. (in Chinese))
    [9] ZHUANG H Y, HUZ H, WANGX J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645-3668.
    [10] ZHUANG H Y, HU Z H, CHEN G X. Numerical modeling on the seismic responses of a large underground structure in soft ground[J]. Journal of Vibroengineering, 2015, 17(2): 802-815.
    [11] 马学宁, 赵双喜, 艾 昕. 地下连续墙深基坑支护结构振动台模型试验研究[J]. 兰州交通大学学报, 2015, 34(1): 1-5. (MA Xue-ning, ZHAO Shuang-xi, AI xin. Shaking table test study on deep pit supporting structure of underground continuous wall[J]. Journal of Lanzhou Jiaotong University, 2015, 34(1): 1-5. (in Chinese))
    [12] LIU H B, SONG E X. Working mechanism of cutoff walls in reducing uplift of large underground structures induced by soil liquefaction[J]. Computers and Geotechnics, 2006(33): 209-211.
    [13] ZHUANG H Y, CHEN G X. A viscous-plastic model for soft soil under cyclic loadings[C]// Geotechnical Special Publication of ASCE, Soil and Rock Behavior and Modeling- Proceedings of the Geo-Shanghai Conference, 2006, 150: 343-350.
    [14] LEE Jeeho, FENVES Gregory L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998(4): 892-900.
    [15] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
    [16] 楼梦麟, 王文剑, 朱 彤. 土–结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动, 2000, 20(2): 30-36. (LOU Meng-lin, WANG Wen-jian, ZHU Tong. Soil lateral boundary effect in shaking table model test of soil-structure system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(2): 30-36. (in Chinese))
    [17] BS 5975:2008 + A1 2011 Code of practice for temporary works procedures and the permissible stress design of falsework.
    [18] 庄海洋, 吴祥祖, 陈国兴. 考虑初始静应力状态的土-地下结构非线性静、动力耦合作用研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3112-3119. (ZHUANG Hai-yang, WU Xiang-zu, CHEN Guo-xing. Study of nonlinear static and dynamic coupling interaction of soil-underground structure considering initial static stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3112-3119. (in Chinese))
    [19] 刘晶波, 李 彬. 三维黏弹性静-动力统一人工边界[J]. 中国科学(E辑): 工程科学材料科学, 2005, 35(9): 966-980. (LIU Jing-bo, LI Bin. A three-dimensional visco-elastic uniform artificial boundary for static and dynamic together[J]. Scientia Sinica (Technologica), 2005, 35(9): 966-980. (in Chinese))
计量
  • 文章访问数:  371
  • HTML全文浏览量:  3
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-02
  • 发布日期:  2017-08-24

目录

    /

    返回文章
    返回