• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xue-jian, ZHUANG Hai-yang, CHEN Guo-xing, WANG Rui. Effect of diaphragm wall on earthquake responses of an underground subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1435-1443. DOI: 10.11779/CJGE201708010
Citation: WANG Xue-jian, ZHUANG Hai-yang, CHEN Guo-xing, WANG Rui. Effect of diaphragm wall on earthquake responses of an underground subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1435-1443. DOI: 10.11779/CJGE201708010

Effect of diaphragm wall on earthquake responses of an underground subway station

More Information
  • Received Date: May 02, 2016
  • Published Date: August 24, 2017
  • At present, the diaphragm wall is always used as the partial side wall of the underground subway station. However, the diaphragm wall is always neglected in the seismic design of an underground structure for that it is looked as a reserved safety for its earthquake resistance. To verify this opinion, a finite-element model is established to simulate the static and dynamic coupling interaction among the soil, the diaphragm wall and the underground subway station. The effects of the diaphragm wall on the earthquake responses of the underground subway station are investigated and analyzed. As a result, the diaphragm wall can increase the lateral deformation stiffness of the underground structure, which reduces the relative lateral seismic deformation of the underground structure. From this point, the seismic design method for the underground structure is conservative. However, the diaphragm wall may also change the seismic deformation characteristics of the underground structure, which will aggravate the earthquake-induced tension damages of the plates of the underground structure under strong earthquakes. Moreover, the diaphragm wall may affect the friction responses on the interaction surfaces between the soils and the underground structure.
  • [1]
    IWATATE T, KOBAYASHI Y, KUSU H, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]// The 14th World Conference on Earthquake Engineering. Beijing, 2000: 1043.
    [2]
    HASHASH Y, HOOK J, SCHMIDT B, et al. Seismic design and analysis of underground structure[J]. Tunneling and Underground Space Technology, 2001, 16(4): 247-293.
    [3]
    ZHUANG H Y, CHENG S G, CHEN G X. Numerical emulation and analysis on the earthquake damages of Dakai subway station caused by the Kobe earthquake[J]. Chinese Journal of Rock and Soil Mechanics, 2008, 29(1): 245-250.
    [4]
    川岛一彦. 地下结构の耐震设计[M]. 日本: 鹿岛出版社, 1994. (KWASHIMA K. Seismic design of underground structures[M]. Japan: Kashima Publishing Company, 1994. (in Japanese))
    [5]
    KAWASHIMA K. Seismic design of underground structures in soft ground, a review[C]// Proceedings of the International Symposium on Tunneling in Difficult Ground Conditions. Tokyo, 1999.
    [6]
    杨林德, 王国波, 郑永来, 等. 地铁车站接头结构振动台模型实验及地震响应的三维数值模拟[J]. 岩土工程学报, 2007, 29(12): 1892-1898. (YANG Lin-de, WANG Guo-bo, ZHENG Yong-lai, et al. Shaking table tests on subway station joint structure and 3D numerical simulation of seismic response[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1892-1898. (in Chinese))
    [7]
    刘晶波, 王文晖, 赵冬冬, 等. 复杂断面地下结构地震反应分析的整体式反应位移法[J]. 土木工程学报, 2014, 47(1): 134-142. (LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Integral response deformation method in seismic analysis of complex section underground structures[J]. China Civil Engineering Journal, 2014, 47(1): 134-142. (in Chinese))
    [8]
    王 刚, 张建民, 魏 星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623-1627. (WANG Gang, ZHANG Jian-min, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623-1627. (in Chinese))
    [9]
    ZHUANG H Y, HUZ H, WANGX J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645-3668.
    [10]
    ZHUANG H Y, HU Z H, CHEN G X. Numerical modeling on the seismic responses of a large underground structure in soft ground[J]. Journal of Vibroengineering, 2015, 17(2): 802-815.
    [11]
    马学宁, 赵双喜, 艾 昕. 地下连续墙深基坑支护结构振动台模型试验研究[J]. 兰州交通大学学报, 2015, 34(1): 1-5. (MA Xue-ning, ZHAO Shuang-xi, AI xin. Shaking table test study on deep pit supporting structure of underground continuous wall[J]. Journal of Lanzhou Jiaotong University, 2015, 34(1): 1-5. (in Chinese))
    [12]
    LIU H B, SONG E X. Working mechanism of cutoff walls in reducing uplift of large underground structures induced by soil liquefaction[J]. Computers and Geotechnics, 2006(33): 209-211.
    [13]
    ZHUANG H Y, CHEN G X. A viscous-plastic model for soft soil under cyclic loadings[C]// Geotechnical Special Publication of ASCE, Soil and Rock Behavior and Modeling- Proceedings of the Geo-Shanghai Conference, 2006, 150: 343-350.
    [14]
    LEE Jeeho, FENVES Gregory L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998(4): 892-900.
    [15]
    LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
    [16]
    楼梦麟, 王文剑, 朱 彤. 土–结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动, 2000, 20(2): 30-36. (LOU Meng-lin, WANG Wen-jian, ZHU Tong. Soil lateral boundary effect in shaking table model test of soil-structure system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(2): 30-36. (in Chinese))
    [17]
    BS 5975:2008 + A1 2011 Code of practice for temporary works procedures and the permissible stress design of falsework.
    [18]
    庄海洋, 吴祥祖, 陈国兴. 考虑初始静应力状态的土-地下结构非线性静、动力耦合作用研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3112-3119. (ZHUANG Hai-yang, WU Xiang-zu, CHEN Guo-xing. Study of nonlinear static and dynamic coupling interaction of soil-underground structure considering initial static stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3112-3119. (in Chinese))
    [19]
    刘晶波, 李 彬. 三维黏弹性静-动力统一人工边界[J]. 中国科学(E辑): 工程科学材料科学, 2005, 35(9): 966-980. (LIU Jing-bo, LI Bin. A three-dimensional visco-elastic uniform artificial boundary for static and dynamic together[J]. Scientia Sinica (Technologica), 2005, 35(9): 966-980. (in Chinese))
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return