• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

显微CT扫描南京粉砂空间孔隙结构的精细化表征

张巍, 梁小龙, 唐心煜, 施斌, 徐炎达, 肖瑞

张巍, 梁小龙, 唐心煜, 施斌, 徐炎达, 肖瑞. 显微CT扫描南京粉砂空间孔隙结构的精细化表征[J]. 岩土工程学报, 2017, 39(4): 683-689. DOI: 10.11779/CJGE201704013
引用本文: 张巍, 梁小龙, 唐心煜, 施斌, 徐炎达, 肖瑞. 显微CT扫描南京粉砂空间孔隙结构的精细化表征[J]. 岩土工程学报, 2017, 39(4): 683-689. DOI: 10.11779/CJGE201704013
ZHANG Wei, LIANG Xiao-long, TANG Xin-yu, SHI Bin, XU Yan-da, XIAO Rui. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683-689. DOI: 10.11779/CJGE201704013
Citation: ZHANG Wei, LIANG Xiao-long, TANG Xin-yu, SHI Bin, XU Yan-da, XIAO Rui. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683-689. DOI: 10.11779/CJGE201704013

显微CT扫描南京粉砂空间孔隙结构的精细化表征  English Version

基金项目: 国家自然科学基金重点项目(41230636); 国家自然科学基; 金项目(40902076); 江苏省自然科学基金项目(BK20141224)
详细信息
    作者简介:

    张 巍(1974- ),男,副教授,从事工程地质数值方法研究。E-mail: wzhang@nju.edu.cn。

Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT

  • 摘要: 孔隙结构是反映土体物理、力学性质变化的本征指标,传统医用CT分辨率尺度不足以辨识表征岩土体细观结构的单个颗粒或孔隙。使用了14 μm高空间分辨率的工业显微CT,对砂雨法生成的南京粉砂试样进行了扫描。对CT图像预处理后所得二值数字图像序列进行了三维重构,实现了任意表征单元体(REV)提取,并可对REV采用三维二值矩阵加以表征与定量分析。通过分析断层图像序列,计算出土样整体的体积孔隙率,与实验孔隙率误差仅3.93%。沿试样高度计算表观孔隙率在20.97%~46.77%范围内波动。从试样底部一REV中提取出水平方向、与水平面成60°角以及两正交垂直方向共4个典型切面,对其孔隙定向性进行统计分析,结果表明,水平切面具有最小主定向角,两正交垂直切面中,一个具有最大主定向角,另一具有最小各向异性率,斜切面孔隙呈近似等向分布,无明显定向性。采用孔隙网络模型进行空间孔径定量分析,结果发现,所提取出3个REV的最大孔径分布在629~696 μm,最小孔径分布在54~77 μm,平均孔径分布在166~185 μm,孔径分布在100~200 μm范围内最为集中。方法可用于热、水、力等各类因素作用下土体空间孔隙结构的无损定量分析。
    Abstract: Pore structure is the index reflecting the nature of the physical and mechanical properties of the soil. The resolution scale of the traditional medical CT is not high enough to identify the single grain or pore characterizing the meso-structure of geo-materials. An industrial micro-CT, with a high spatial resolution of 14 μm, is used to scan a Nanjing silty sand specimen fabricated by pluviation. The binary digital image sequence is acquired after preprocessing the CT initial images, and three-dimensional reconstruction is implemented. Arbitrary representative elementary volume (REV) is extracted, and three-dimensional binary matrix is used for the characterization of the REV and for the quantitative calculation. By analyzing the tomographic images, the volume porosity of the whole specimen is calculated, with an error of only 3.93% compared with the experimental porosity. The apparent porosity along the specimen fluctuates between 20.97 and 46.77%. Four typical sections, one horizontal, one tilting with an angle of 60 degrees to the horizon and two orthogonal vertical sections, are extracted from the REV at the bottom of the specimen. Statistical analysis of the preferred orientation is performed, and the results show that the minimum orientation angle occurs at the horizontal section, and one of the two orthogonal vertical sections exhibits the maximum orientation angle and the other exhibits the maximum anisotropic ratio, and the oblique section exhibits approximate isotropy, namely no obvious preferred orientation. The pore network model is used for spatial pore diameter analysis of three extracted REVs, and the results indicate that the maximum pore diameter distributes from 629 to 696 μm, and the minimum pore diameter does from 54 to 77 μm, and the average pore diameter does from 166 to 185 μm, and the pore diameter concentrates from 100 to 200 μm. The proposed method is capable of nondestructive quantitative analysis of pore structure variation of the spatial soil under any effect induced by heat, water or mechanics.
  • [1] MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. New York: Wiley, 2005: 122-123.
    [2] 王慧妮, 倪万魁. 基于计算机X射线断层术语扫描电镜图像的黄土微结构定量分析[J]. 岩土力学, 2012, 33(1): 243-248. (WANG Hui-ni, NI Wan-Kui. Quantitative analysis of loes microstructure based on CT and SEM images [J]. Rock and Soil Mechanics, 2012, 33(1): 243-248. (in Chinese))
    [3] 张先伟, 孔令伟. 利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J]. 岩土力学, 2013, 34(增刊2): 134-142. (ZHANG Xian-wei, KONG Ling-wei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics, 2013, 34(S2): 134-142. (in Chinese))
    [4] 陈 悦, 李东旭. 压汞法测定材料孔结构的误差分析[J]. 硅酸盐通报, 2006, 25(4): 198-201. (CHEN Yue, LI Dong-xu. Analysis of error for pore structure of porous materials measured by MIP[J]. Bullitin of The Chinese Ceramic Society, 2006, 25(4): 198-201. (in Chinese))
    [5] 陈世杰, 赵淑萍, 马 巍, 等. 利用CT扫描技术进行冻土研究的现状和展望[J]. 冰川冻土, 2013, 35(1): 193-200. (CHEN Shi-jie, ZHAO Shu-ping, MA Wei, et al. Studying frozen soil with CT technology: present studies and prospects[J]. Journal of Glaciology and Geocryology, 2013 35(1): 193-200. (in Chinese))
    [6] 方祥位, 申春妮, 陈正汉, 等. 原状Q 2 黄土CT-三轴浸水试验研究[J]. 土木工程学报, 2011, 44(10): 98-106. (FANG Xiang-wei, SHEN Chun-ni, CHEN Zheng-han, et al. Triaxial wetting tests of intact Q 2 loess by computed tomography[J]. China Civil Engieering Journal, 2011, 44(10): 98-106. (in Chinese))
    [7] 左永振, 程展林, 赵 娜. 千枚岩碎屑土三轴试验剪切带扩展性状的CT研究[J]. 岩土工程学报, 2015, 37(8): 1524-1531. (ZUO Yong-zhen, CHENG Zhan-lin, ZHAO Na. Expansion mechanism of shear bands in phyllite detritus soil by CT technology[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1524-1531. (in Chinese))
    [8] 姚志华, 陈正汉, 朱元青, 等. 膨胀土在湿干循环和三轴浸过程中细观结构变化的试验研究[J]. 岩土工程学报, 2010, 32(1): 68-76. (YAO Zhi-hua, CHEN Zheng-han, ZHU Yuan-qing, et al. Meso-structural change of remolded expansive soil during wetting-drying cycles and triaxial soaking tests[J]. Chinese Journal of Geotechnical Enigeering, 2010, 32(1): 68-76. (in Chinese))
    [9] 方建银, 党发宁, 肖耀庭, 等. 粉砂岩三轴压缩CT试验过程的分区定量研究[J]. 岩土力学与工程学报, 2015, 34(10): 1976-1984. (FANG Jian-yin, DANG Fa-ning, XIAO Yao-ting, et al. Quantitative study on the CT test process of siltstone under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 1976-1984. (in Chinese))
    [10] 韩放达, 肖永顺, 常 铭, 等. X射线源焦点尺寸测量方法和标准综述[J]. 中国体视学和图像分析, 2014, 19(4): 321-329. (HAN Fang-da, XIAO Yong-shun, CHANG Ming, et al. Review of measurement methods and standards of focal spot size of X-ray sources[J]. Chinese Journal of Stereology and Image Analysis, 2014, 19(4): 321-329. (in Chinese))
    [11] BLUNT M, BIJIELJIC B, DONG H, et al. Pore-scale imaging and modeling[J]. Advances in Water Resources, 2013, 51(1): 197-216.
    [12] 李 伟, 要惠芳, 刘鸿福, 等. 基于显微CT的不同煤体结构煤三维孔隙精细表征[J]. 煤炭学报, 2014, 39(6): 1127-1132. (LI Wei, YAO Hui-fang, LIU Hong-fu, et al. Advanced characterization of three-dimensional pores in coals with different coal-body structure by micro-CT[J]. Journal of China Coal Society, 2014, 39(6): 1127-1132. (in Chinese))
    [13] 李建胜, 王 东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩土工程学报, 2010, 32(11): 1703-1708. (LI Jian-sheng, WANG Dong, KANG Tian-he. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708. (in Chinese))
    [14] 李小春, 曾志姣, 石 露, 等. 岩石微焦CT扫描的三轴仪及其初步应用[J]. 岩石力学与工程学报, 2015, 34(6): 1128-1134. (LI Xiao-chun, ZENG Zhi-jiao, SHI Lu, et al. Triaxial apparatus for micro-focus CT scan of rock and its preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1128-1134. (in Chinese))
    [15] FONSECA J, O’SULLIVAN C, COOP M, et al. Quantifying the evolution of soil fabric during shearing using Scalar parameters[J]. Géotechnique, 2013, 63(10): 818-829.
    [16] 朱建群, 孔令伟, 高文华, 等. 南京砂的稳态特征研究[J]. 岩土工程学报, 2012, 34(5): 931-935. (ZHU Jian-qun, KONG Ling-wei, GAO Wen-hua, et al. Steady-state properties of Nanjing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 931-935. (in Chinese))
    [17] 朱逢斌, 陈 甦, 孙雷江, 等. 自制砂雨装置填砂装样质量分析[J]. 地下空间与工程学报, 2013, 9(增刊2): 2076-2092. (ZHU Feng-bin, CHEN Su, SUN Lei-jiang, et al. Quality analysis of sand filling by the self-made pluviation device[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(S2): 2076-2092. (in Chinese))
    [18] RASBAND W. Online manual for the WCIF-ImageJ collection[EB/OL].http://www.uhnresearch.ca/facilities/wcif/imagej/, 2006.
    [19] 唐朝生, 施 斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560-565. (TANG Chao-sheng, SHI Bin, WANG Bao-jun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engieering, 2008, 30(4): 560-565. (in Chinese))
    [20] 徐日庆, 邓祎文, 徐 波, 等. 基于SEM图像的软土三维孔隙率计算及影响因素分析[J]. 岩石力学与工程学报, 2015, 34(7): 1497-1502. (XU Ri-qing, DENG Wei-wen, XU Bo, et al. Calculation of three-dimensional porosity of soft soil based on SEM image[J]. Chinese Jouranl of Rock Mechanics and Engineering, 2015, 34(7): 1497-1502. (in Chinese))
    [21] LIU Chun, SHI Bin, ZHOU Jian, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
    [22] 王宝军. 基于标准差椭圆法SEM图像颗粒定向研究原理与方法[J]. 岩土工程学报, 2009, 31(7): 1082-1087. (WANG Bao-jun. Theories and methods for soil grain orientation distribution in SEM by standard deviational ellipse[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1082-1087. (in Chinese))
    [23] DU Yan-jun, JIANG Ning-jun, LIU Song-yu, et al. Engineering properties and microstructural characteristics of cement solidified zinc-contaminated kaolin clay[J]. Canadian Geotechnical Journal, 2014, 51(3): 289-302.
    [24] DONG H, BLUNT M J. Pore-network extraction from micro-computerized-tomography images[J]. Physical Review E, 2009, 80(3): 1-11.
  • 期刊类型引用(2)

    1. 许成顺,韩润波,杜修力,许紫刚. 考虑土-结构相互作用的弹簧-地下结构体系静力推覆试验技术及其试验研究. 建筑结构学报. 2023(01): 248-258 . 百度学术
    2. 卢钦武,关振长,林林,吴淑婧,宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究. 岩土力学. 2023(08): 2318-2326 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2016-01-24
  • 发布日期:  2017-05-19

目录

    /

    返回文章
    返回