• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

均匀颗粒间接触冲刷的颗粒流数值模拟

常利营, 陈群, 叶发明

常利营, 陈群, 叶发明. 均匀颗粒间接触冲刷的颗粒流数值模拟[J]. 岩土工程学报, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051
引用本文: 常利营, 陈群, 叶发明. 均匀颗粒间接触冲刷的颗粒流数值模拟[J]. 岩土工程学报, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051
CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051
Citation: CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051

均匀颗粒间接触冲刷的颗粒流数值模拟  English Version

基金项目: 教育部博士点基金(博导类)项目(20100181110076)
详细信息
    作者简介:

    常利营(1986- ),女,博士,主要从事土体渗流稳定及变形分析研究。E-mail: togive@126.com。

Particle flow simulation for contact erosion between uniform particles

  • 摘要: 成层土在渗流作用下容易发生接触冲刷,细土层中的颗粒从粗土层孔隙中被水流带走,接触冲刷的持续发展会对水工建筑物产生严重的后果。为了从细观角度研究接触冲刷的发生机理,对五组由均匀颗粒组成的土层间的接触冲刷现象进行了颗粒流数值模拟。数值模拟结果表明,当细粒层的有效直径与粗粒层的有效孔隙直径之比大于0.50时,两土层间不会发生接触冲刷。当两土层发生接触冲刷时,接触面处的细颗粒会被水流带起从粗颗粒孔隙中冲出,随着细颗粒流失量的增加,上层粗颗粒逐渐下沉,渗透流速逐渐增加。
    Abstract: Contact erosion easily occurs at the interface between two soil layers subjected to a groundwater flow. Particles of the fine soils are eroded by the flow and transported through the pores of the coarse layer, which may lead to failure of a hydraulic structure. To investigate the meso-mechanism of contact erosion, different layers consisting of uniform particles subjected to a flow parallel to the interface are simulated using the particle flow code. The results show that when the ratio of the effective diameter of the fine layer to the effective pore diameter of the coarse layer is larger than 0.50, the contact erosion does not occur. When the contact erosion happens between layers, the fine particles at the interface will move and be transported by the flows. With the increase in the loss quantity of the fine particles, the coarse particles will sink and the flow velocity will increase.
  • [1] 刘 杰, 谢定松, 崔亦昊. 江河大堤双层地基渗透破坏机理模型试验研究[J]. 水利学报, 2008, 39(11): 1211-1220. (LIU Jie, XIE Ding-song, CUI Yi-hao. Failure mechanism of seepage in levees with double-layer foundation[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1211-1220. (in Chinese))
    [2] STÉPHANE B. Erosion in geomechanics applied to dams and levees[M]. New York: John Wiley and Sons Inc, 2013.
    [3] ИСТОМИНА В С. фалвтрадионная устойчивость грунтов[M]. Госстройиэдат, 1957. (ISTOMINA B C. Soil seepage stability[M]. Moscow, 1957. )
    [4] BRAUNS J. Erosionsverhalten geschichteten bodens bei horizontaler durchstromung[J]. Wasserwirtschaft, 1985, 75: 448-453.
    [5] BEZUIJEN A, KLEIN-BRETELLER M, BAKKER K J. Design criteria for placed block revetments and granular filters[C]// Proceedings of the 2 nd International Conference on Coastal & Port Engineering in Developing Countries. Beijing, 1987.
    [6] GUIDOUX C, FAURE Y H, BEGUIN R, et al. Contact erosion at the interface between granular filter and various base soils with tangential flow[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 741-750.
    [7] WÖRMAN A, OLAFSDOTTIR R. Erosion in a granular medium interface[J]. Journal of Hydraulic Research,1992, 30(5): 639-655.
    [8] DEN ADEL H, KOENDERS M A, BAKKER K J. The analysis of relaxed criteria for erosion-control filters[J]. Canadian Geotechnical Journal, 1994, 31(6): 829-840.
    [9] BEGUIN R, PHILIPPE P, FAURE Y H. Experimental study of contact erosion at a granular interface[J]. Springer Series in Geomechanics and Geoengineering, 2011, 11: 131-136.
    [10] BEGUIN R, PHILIPPE P, FAURE Y H. Pore-scale flow measurements at the interface between a sandy layer and a model porous medium: application to statistical modeling of contact erosion[J]. Journal of Hydraulic Engineering, 2013, 139(1): 1-11.
    [11] SARI H, CHAREYER B, CATALANO E, et al. Investigation of internal erosion process using a coupled DEM-fluid method[C]// Proceedings of the 2 nd International Conference on Particle-based Methods-Particles 2011. Barcelona, 2011.
    [12] SHERARD J L, DUNNIGAN L P, TALBOT J R. Basic properties of sand and gravel filters[J]. Journal of Geotechnical Engineering, 1984, 110(6): 684-700.
    [13] ZOU Y H, CHEN Q, CHEN X Q, et al. Discrete numerical modeling of particle transport in granular filters[J]. Computers and Geotechnics, 2013, 47(47): 48-56.
    [14] SHAMY U E, AYDIN F. A micro-scale model for the analysis of flood-induced piping in river levees[C]// Proceedings of Sessions of Geo-Denver 2007 Congress: Embankments, Dams and Slopes. GSP, 2007: 161.
    [15] SHAMY U E, AYDIN F. Multiscale modeling of flood-induced piping in river levees[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1385-1398.
    [16] ABDELHAMID Y, SHAMY U E. Multiscale modeling of flood-induced scour in a particle bed[C]//GeoCongress 2012, Geotechnical Special Publicaiton, ASCE. Oakland, 2012: 740-749.
    [17] HUANG Q F, ZHAN M L, SHENG J C, et al. Investigation of fluid flow-induced particle migration in granular filters using a DEM-CFD method[J]. Journal of Hydrodynamics, 2014, 26(3): 406-415.
    [18] JACKSON R. The dynamics of fluidized particles[M]. New York: Cambridge University Press, 2000.
    [19] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [20] BOUILLARD J X, LYCZKOWSKI R W, GIDASPOW D. Porosity distributions in a fluidized bed with an immersed obstacle[J]. AICHE Journal, 1989, 35(6): 908-922.
    [21] STÉPHANE B. Erosion of geomaterials[M]. New York: John Wiley and Sons Inc, 2012.
    [22] GOLTZ M. Determination of critical filter velocity in suffusive soils[R]. Saint Petersburg: European Working Group on Internal Erosion, 2009.
    [23] 刘 杰. 土石坝渗流控制理论基础及工程经验教训[M]. 北京: 中国水利水电出版社, 2006. (LIU Jie. Seepage control of earth-rock dams: theoretical basis, engineering experiences and lessons[M]. Beijing: China Water & Power Press, 2006. (in Chinese))
  • 期刊类型引用(17)

    1. 姚贵,张志明,袁勇,禹海涛,吴彦霖. 基于振动台试验的中庭式地铁车站地震响应数值模拟. 山东理工大学学报(自然科学版). 2025(03): 57-63 . 百度学术
    2. 崔春义,许民泽,许成顺,赵经彤,刘海龙,孟坤. 考虑地震需求统计不确定性的地铁车站结构地震易损性分析. 岩土工程学报. 2025(03): 453-462 . 本站查看
    3. 张启良. 大跨度无柱平顶结构地铁车站抗震分析. 智能城市. 2025(01): 148-151 . 百度学术
    4. 侯本伟,游丹,范世杰,许成顺,钟紫蓝. 基于网络效率的城市轨道交通网络抗震韧性评估. 清华大学学报(自然科学版). 2024(03): 509-519 . 百度学术
    5. 丘志杰,龙慧,汪博豪,刘璐瑶. 相邻框架结构与地铁车站的间距比对地铁车站地震响应的影响. 南华大学学报(自然科学版). 2024(04): 26-36 . 百度学术
    6. 李维沈,李文婷,徐昊哲. 地下结构抗震性能指标限值的影响因素研究. 自然灾害学报. 2024(06): 178-191 . 百度学术
    7. 姚凡夫,杨帆,庄海洋. CFRP布加固的地铁地下车站结构中柱抗震性能研究. 震灾防御技术. 2024(04): 754-762 . 百度学术
    8. 苗晗,蒋录珍,安军海,李莎,马晓明. 叠合装配式管廊结构抗震性能水平与评价方法研究. 震灾防御技术. 2023(01): 53-64 . 百度学术
    9. 庄海洋,李晟,王伟,陈国兴. 采用不同隔震形式的双层地铁地下车站结构地震反应分析. 振动工程学报. 2023(02): 379-388 . 百度学术
    10. 白立广. 地下双层车站盖挖段主体结构施工技术. 建筑机械. 2023(08): 63-67 . 百度学术
    11. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 . 百度学术
    12. 游裕鑫,邵国建,李昂,刘旭. 异跨框架式地铁地下车站结构三维非线性地震响应分析. 河南科学. 2022(04): 610-617 . 百度学术
    13. 罗永鸿,张梓鸿,许成顺,李洋. 基于Pushover分析方法的多层地铁车站地震反应研究. 震灾防御技术. 2022(01): 143-153 . 百度学术
    14. 张椿民. 地下多层地铁车站结构抗震设计对比分析. 市政技术. 2022(12): 50-58 . 百度学术
    15. 范世杰,游丹,侯本伟,许成顺. 基于网络效率的城市轨道交通网络震后性能评估. 防灾减灾工程学报. 2022(06): 1165-1173+1190 . 百度学术
    16. 陈文斌,庄海洋,李晟,陈苏. 基于柱顶隔震的3层3跨地铁地下车站结构抗震性能研究. 震灾防御技术. 2021(01): 146-156 . 百度学术
    17. 丁录董,徐军林,庄海洋,陈文斌. 预制+现浇装配式地铁地下车站结构地震反应的三维有限元分析. 世界地震工程. 2021(04): 157-166 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  361
  • HTML全文浏览量:  6
  • PDF下载量:  376
  • 被引次数: 33
出版历程
  • 收稿日期:  2016-05-18
  • 发布日期:  2016-10-19

目录

    /

    返回文章
    返回